Filomat 33:1 (2019), 221–231 https://doi.org/10.2298/FIL1901221E

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Characterization of Strong Preserver Operators of Convex Equivalent on the Space of All Real Sequences Tend to Zero

Noha Eftekhari^a, Ali Bayati Eshkaftaki^a

^aDepartment of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, 88186-34141, Iran

Abstract. In this work we consider all bounded linear operators $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ that preserve convex equivalent relation $\sim_c \mathfrak{on} \mathfrak{c}_0$ and we denote by $\mathcal{P}_{ce}(\mathfrak{c}_0)$ the set of such operators. If T strongly preserves convex equivalent, we denote them by $\mathcal{P}_{sce}(\mathfrak{c}_0)$. Some interesting properties of $\mathcal{P}_{ce}(\mathfrak{c}_0)$ are given. For $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$, we show that all rows of T belong to ℓ^1 and for any $j \in \mathbb{N}$, we have $0 \in \operatorname{Im}(Te_j)$, also there are $a, b \in \operatorname{Im}(Te_j)$ such that $\operatorname{co}(Te_j) = [a, b]$. It is shown that all row sums of T belong to [a, b]. We characterize the elements of $\mathcal{P}_{ce}(\mathfrak{c}_0)$, and some interesting results of all $T \in \mathcal{P}_{sce}(\mathfrak{c}_0)$ are given, for example we prove that a = 0 < b or a < 0 = b. Also the elements of $\mathcal{P}_{sce}(\mathfrak{c}_0)$ are characterized. We obtain the matrix representation of $T \in \mathcal{P}_{sce}(\mathfrak{c}_0)$ does not contain any zero row. Some relevant examples are given.

1. Introduction

Throughout this work, c_0 is the Banach space of all real sequences converge to zero with the supremum norm. An element $x \in c_0$ can be represented by $\sum_{i \in \mathbb{N}} x(i)e_i$, where $e_i : \mathbb{N} \to \mathbb{R}$ is defined by $e_i(j) = \delta_{ij}$, the

Kronecker delta. For $x \in c_0$, we write co(x), instead of the convex combination of the set $Im(x) = \{x(i) : i \in \mathbb{N}\}$. Let $T : c_0 \to c_0$ be a bounded linear operator. It is easy to show that, T is represented by a matrix $(t_{ij})_{i,j\in\mathbb{N}}$ in the sense that

$$(Tx)(i) = \sum_{j \in \mathbb{N}} t_{ij}x(j), \quad \text{for } x \in \mathfrak{c}_0 \text{ and } i \in \mathbb{N},$$

where $t_{ij} = (Te_j)(i)$. To simplify, we will incorporate *T* to its matrix form $(t_{ij})_{i,j \in \mathbb{N}}$.

Definition 1.1. [3] For $x, y \in c_0$, we say that x is convex majorized by y, and denoted by $x \prec_c y$, if $co(x) \subseteq co(y)$ and x is said to be convex equivalent to y, denoted by $x \sim_c y$, whenever $x \prec_c y \prec_c x$, i.e., co(x) = co(y).

The relation \sim_c is an equivalent relation on c_0 . For $x \in c_0$, if $0 \in co(x)$, then co(x) = [a, b], for some $a, b \in \mathbb{R}$ with $a \le 0 \le b$, and if $0 \notin co(x)$, then co(x) is equal to either [a, 0), for some a < 0, or (0, b], for some b > 0.

²⁰¹⁰ Mathematics Subject Classification. Primary 15A86; Secondary 47B60, 47L07

Keywords. Convex majorization, Strong preserver, Convex equivalent

Received: 28 February 2018; Revised: 09 January 2019; Accepted: 12 March 2019

Communicated by Dragan S. Djordjević

Research supported by Shahrekord University

Email addresses: eftekhari-n@sku.ac.ir, eftekharinoha@yahoo.com (Noha Eftekhari), bayati.ali@sku.ac.ir,

a.bayati@math.iut.ac.ir (Ali Bayati Eshkaftaki)

Definition 1.2. [5] Let \mathcal{R} be a relation on c_0 . The linear operator $T : c_0 \to c_0$ is said preserve \mathcal{R} if for each $x, y \in c_0$,

 $\mathcal{R}(x, y)$ implies $\mathcal{R}(Tx, Ty)$,

and T is called strongly preserve \mathcal{R} if

 $\mathcal{R}(x, y)$ if and only if $\mathcal{R}(Tx, Ty)$.

The set of all bounded linear operators $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ which preserve convex majorization, convex equivalent, strongly preserve convex majorization and strongly preserve convex equivalent denoted by $\mathcal{P}_{cm}(\mathfrak{c}_0), \mathcal{P}_{ce}(\mathfrak{c}_0), \mathcal{P}_{scm}(\mathfrak{c}_0)$ and $\mathcal{P}_{sce}(\mathfrak{c}_0)$, respectively. Obviously, $\mathcal{P}_{cm}(\mathfrak{c}_0) \subseteq \mathcal{P}_{ce}(\mathfrak{c}_0), \mathcal{P}_{scm}(\mathfrak{c}_0) \subseteq \mathcal{P}_{cm}(\mathfrak{c}_0)$ and $\mathcal{P}_{sce}(\mathfrak{c}_0)$.

Example 1.3. Let $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ be defined by $Tx = (ax_1, bx_1, ax_2, bx_2, \ldots)$, for $a, b \in \mathbb{R}$ and $x = (x_1, x_2, \ldots) \in \mathfrak{c}_0$. Clearly $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$.

In general case, let (n_k) be a bounded sequence in \mathbb{N} . The operator $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ defined by

$$Tx = (\underbrace{ax_1, \ldots, ax_1}_{n_1}, \underbrace{bx_1, \ldots, bx_1}_{n_2}, \underbrace{ax_2, \ldots, ax_2}_{n_3}, \underbrace{bx_2, \ldots, bx_2}_{n_4}, \ldots)$$

lies in $\mathcal{P}_{ce}(\mathfrak{c}_0)$, for $x = (x_1, x_2, \ldots) \in \mathfrak{c}_0$.

Example 1.4. Let $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ be a bounded linear operator defined by $Tx = (0, x_1, x_2, x_3, \ldots)$, for $x = (x_1, x_2, x_3, \ldots) \in \mathfrak{c}_0$. It is easy to show that $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$.

Remark 1.5. Note that for $T \in \mathcal{P}_{ce}(c_0)$ and $j_1, j_2 \in \mathbb{N}$, since $co(Te_{j_1}) = co(Te_{j_2})$ holds because $e_{j_1} \sim_c e_{j_2}$, the values $a := \inf Te_j$ and $b := \sup Te_j$ are constants, independent of chosen $j \in \mathbb{N}$ (similarly as in [3, Remark 2.10]). That is, for $T \in \mathcal{P}_{ce}(c_0)$, there is a bounded real interval I, such that $co(Te_j) = I$, for all $j \in \mathbb{N}$. Therefore $a = \inf I$, and $b = \sup I$, for any $T \in \mathcal{P}_{ce}(c_0)$. Also, we define $I^+ = \{j \in \mathbb{N} : (Te_j)(i) > 0\}$ and $I^- = \{j \in \mathbb{N} : (Te_j)(i) < 0\}$.

From now on *a*, *b* and I^+ , I^- are as in Remark 1.5.

In [3], Bayati et al. characterized the elements of $\mathcal{P}_{cm}(\mathfrak{c}_0)$ and obtained some properties of them as follows.

Theorem 1.6. [3, Theorem 2.8 and Corollary 2.9] For $T \in \mathcal{P}_{cm}(\mathfrak{c}_0)$, all rows of T lie in ℓ^1 . Moreover for any fixed $i \in \mathbb{N}$, we have $\sum_{j \in \mathbb{N}} |(T\mathbf{e}_j)(i)| \le ||T||$. Also, independent of chosen distinct $j_1, j_2 \in \mathbb{N}$, we have $||T\mathbf{e}_{j_1} - T\mathbf{e}_{j_2}|| = ||T||$.

Theorem 1.7. [3, Theorem 2.13 and Lemma 2.14] Let $T \in \mathcal{P}_{cm}(\mathfrak{c}_0)$. Then $||T\mathbf{e}_j|| = ||T||$ and $0 \in \text{Im}(T\mathbf{e}_j)$, for all $j \in \mathbb{N}$.

Theorem 1.8. [3, Theorem 2.19] Let $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ be a linear operator. Then $T \in \mathcal{P}_{cm}(\mathfrak{c}_0)$ if and only if

- (i) for any $j \in \mathbb{N}$, the value of $\min_{i \in \mathbb{N}} (Te_j)(i)$ exists and independent of $j \in \mathbb{N}$ is equal to a.
- (ii) for any $j \in \mathbb{N}$, the value of $\max_{i \in \mathbb{N}} (Te_j)(i)$ exists and independent of $j \in \mathbb{N}$ is equal to b.

(iii) if
$$a < 0 < b$$
, we have $\frac{1}{a} \sum_{j \in I^-} (Te_j)(i) + \frac{1}{b} \sum_{j \in I^+} (Te_j)(i) \le 1$; if $a < 0 = b$, then we have $\sum_{j \in \mathbb{N}} (Te_j)(i) \ge a$ and if $a = 0 < b$, then it implies $\sum_{i \in \mathbb{N}} (Te_i)(i) \le b$,

where $((Te_i)(i))_{i \in \mathbb{N}}$ is an arbitrary row of *T*.

Some of the results in this work are obtained by the similar technique developed in [3, 4, 7].

We organize this paper as follows. In Section 2 we extend some of recent results of bounded linear preservers of the convex majorization on c_0 to the set of bounded linear operators which preserve convex equivalent on c_0 , we denote this set by $\mathcal{P}_{ce}(c_0)$. It is shown that some of the above mentioned results are satisfied for $\mathcal{P}_{ce}(c_0)$. For $T \in \mathcal{P}_{ce}(c_0)$, we show that all rows of T belong to ℓ^1 and for any $j \in \mathbb{N}$, we have $0 \in \text{Im}(Te_j)$, also there are $a, b \in \text{Im}(Te_j)$ such that $co(Te_j) = [a, b]$. It is shown that any row sums of T belong to [a, b]. We characterize the elements of $\mathcal{P}_{ce}(c_0)$. Section 3 is devoted to study of the properties of strong preservers of convex equivalent on c_0 , we denote this set by $\mathcal{P}_{sce}(c_0)$. We investigate some interesting properties of $T \in \mathcal{P}_{sce}(c_0)$, and obtain that a = 0 < b or a < 0 = b for all $T \in \mathcal{P}_{sce}(c_0)$, also we prove the matrix representation of T does not contain any zero row. At the end, we characterize the set $\mathcal{P}_{sce}(c_0)$.

2. Some properties of the operators in $\mathcal{P}_{ce}(\mathfrak{c}_0)$

The topic of linear preservers is of interest to a large group of matrix theorists. For a survey of linear preserver problems see [9], and for relative papers and book in the theory of majorization, see [1, 2, 6, 8].

In [3], Bayati et al. characterized the operators in $\mathcal{P}_{cm}(\mathfrak{c}_0)$. In this section, we prove some properties of linear preservers of convex equivalent on \mathfrak{c}_0 and characterize the operators in $\mathcal{P}_{cc}(\mathfrak{c}_0)$.

Remark 2.1. Some general properties of $\mathcal{P}_{ce}(\mathfrak{c}_0)$ are as follow.

- 0, id $\in \mathcal{P}_{ce}(\mathfrak{c}_0)$.
- If $T_1, T_2 \in \mathcal{P}_{ce}(\mathfrak{c}_0)$, then $T_1 \circ T_2 \in \mathcal{P}_{ce}(\mathfrak{c}_0)$.
- If $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$, then $\lambda T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$, for all $\lambda \in \mathbb{R}$.
- Any constant coefficient of a permutation on c_0 lies in $\mathcal{P}_{ce}(c_0)$.

We now consider some important properties of $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$.

Theorem 2.2. Let $T : c_0 \to c_0$ be a bounded linear operator. Then for any $i \in \mathbb{N}$, we have $\sum_{j \in \mathbb{N}} |(Te_j)(i)| \le ||T||$, and moreover each row of T belongs to ℓ^1 .

Proof. Let $i, j, n \in \mathbb{N}$. We set $\delta_j = \operatorname{sgn}(Te_j)(i)$ and $x_n = \sum_{j=1}^n \delta_j e_j \in \mathfrak{c}_0$. Then $Tx_n = \sum_{j=1}^n \delta_j Te_j$, and so $(Tx_n)(i) = \sum_{j=1}^n \delta_j (Te_j)(i) = \sum_{j=1}^n |(Te_j)(i)|$. Since $||x_n|| \le 1$, we have

$$(Tx_n)(i) = \sum_{j=1}^n |(Te_j)(i)| = |(Tx_n)(i)| \le ||Tx_n|| \le ||T|| ||x_n|| \le ||T||.$$

Let *n* tend to infinity, so we have $\sum_{j=1}^{\infty} |(Te_j)(i)| \le ||T||$, that is, all rows of *T* belong to ℓ^1 . \Box

Remark 2.3. Indeed, for a bounded linear operator $T : \mathfrak{c}_0 \to \mathfrak{c}_0$, we have $||T|| = \sup_{i \in \mathbb{N}} \sum_{j \in \mathbb{N}} |(T\mathbf{e}_j)(i)|$. (see for instance [10, page 217, Theorem 4.51-c])

Theorem 2.4. Let $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$. Then $||Te_{j_0} - Te_{j'_0}||_{\infty} = ||Te_j||_{\infty}$ for any $j, j_0, j'_0 \in \mathbb{N}$ with $j_0 \neq j'_0$. *Proof.* If $T \equiv 0$, we are done. So suppose that $T \neq 0$. Let $i_0, j, j_0, j'_0 \in \mathbb{N}$, with $j_0 \neq j'_0$. Put

$$\delta_j = \begin{cases} 1 & \text{if } T\mathbf{e}_j(i_0) \ge 0, \\ -1 & \text{if } T\mathbf{e}_j(i_0) < 0. \end{cases}$$

Then $\sum_{k=1}^{n} \delta_{j_k} \mathbf{e}_{j_k}$ is convex equivalent to either $\pm \mathbf{e}_{j_0}$ or $\mathbf{e}_{j_0} - \mathbf{e}_{j'_0}$. Since $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$, it follows from Theorem 2.2 that $\sum_{j \in \mathbb{N}} |(T\mathbf{e}_j)(i_0)| < \infty$. Thus for any $\varepsilon > 0$, there exists $n \in \mathbb{N}$ such that for $j^* > n$, we have $|(T\mathbf{e}_{j^*})(i_0)| < \varepsilon$. Define

$$\delta^* = \begin{cases} -1 & \text{if } \delta_{j_1} = \dots = \delta_{j_n} = 1, \\ 1 & \text{otherwise.} \end{cases}$$

Since $\sum_{k=1}^{n} \delta_{j_k} \mathbf{e}_{j_k} + \delta^* \mathbf{e}_{j^*} \sim_c \mathbf{e}_{j_0} - \mathbf{e}_{j'_0}$ for $j^* \neq j_1, \dots, j_n$, it follows that $\sum_{k=1}^{n} \delta_{j_k} T \mathbf{e}_{j_k} + \delta^* T \mathbf{e}_{j^*} \sim_c T \mathbf{e}_{j_0} - T \mathbf{e}_{j'_0}.$

So

$$\sum_{k=1}^{n} |(T\mathbf{e}_{j_{k}})(i_{0})| + \delta^{*}(T\mathbf{e}_{j^{*}})(i_{0}) \in \operatorname{co}\left(\sum_{k=1}^{n} \delta_{j_{k}} T\mathbf{e}_{j_{k}} + \delta^{*} T\mathbf{e}_{j^{*}}\right) = \operatorname{co}\left(T\mathbf{e}_{j_{0}} - T\mathbf{e}_{j_{0}^{'}}\right),$$

that yields

$$\operatorname{dist}\left(\sum_{k=1}^{n} |(T\mathbf{e}_{j_{k}})(i_{0})|, \operatorname{co}\left(T\mathbf{e}_{j_{0}}-T\mathbf{e}_{j_{0}'}\right)\right) \leq |\delta^{*}(T\mathbf{e}_{j^{*}})(i_{0})| = |(T\mathbf{e}_{j^{*}})(i_{0})| < \varepsilon.$$

As ε is arbitrary, the above distance equals zero and so

$$\sum_{k=1}^n |(T\mathbf{e}_{j_k})(i_0)| \in \overline{\operatorname{co}\left(T\mathbf{e}_{j_0} - T\mathbf{e}_{j'_0}\right)},$$

which implies that $\sum_{k=1}^{n} |(Te_{j_k})(i_0)| \le ||Te_{j_0} - Te_{j'_0}||_{\infty}$. Let *n* tend to infinity, so we have

$$\sum_{k=1}^{\infty} |(T\mathbf{e}_{j_k})(i_0)| \le ||T\mathbf{e}_{j_0} - T\mathbf{e}_{j'_0}||_{\infty}.$$
(1)

The inequality (1) implies that for any $i, j \in \mathbb{N}$, we have $|(Te_j)(i)| \le ||Te_{j_0} - Te_{j'_0}||_{\infty}$, which follows that

$$||Te_{j}||_{\infty} \le ||Te_{j_{0}} - Te_{j_{0}'}||_{\infty}.$$
(2)

It is sufficient to show that

$$||Te_{j_0} - Te_{j_0'}||_{\infty} \le ||Te_j||_{\infty}.$$
(3)

Let $\varepsilon > 0$. Since $Te_j \in \mathfrak{c}_0$, there is $M \in \mathbb{N}$ such that for all i > M, we have

$$|T\mathbf{e}_j(i)| < \frac{\varepsilon}{2}.\tag{4}$$

On the other hand (1) implies that

$$\lim_{j\to\infty}(T\mathbf{e}_j)(1)=0,\ldots,\lim_{j\to\infty}(T\mathbf{e}_j)(M)=0.$$

Hence there is $N \in \mathbb{N}$ such that for all j > N,

$$|(Te_j)(1)|, \dots, |(Te_j)(M)| < \frac{\varepsilon}{2}.$$
 (5)

The relations (4) and (5) yield that if $j^* \neq j_0, 1, ..., N$, then for all $i \in \mathbb{N}$, we have

$$\left| (T\mathbf{e}_{j_0})(i) - (T\mathbf{e}_{j^*})(i) \right| \leq \begin{cases} |(T\mathbf{e}_{j_0})(i)| + \frac{\varepsilon}{2} & \text{if } i \neq 1, \dots, M, \\ \frac{\varepsilon}{2} + |(T\mathbf{e}_{j^*})(i)| & \text{if } i = 1, \dots, M, \\ \leq ||T\mathbf{e}_{j_0}||_{\infty} + \varepsilon, \end{cases}$$

which follows

 $||Te_{j_0} - Te_{j'_0}||_{\infty} = ||Te_{j_0} - Te_{j^*}||_{\infty} \le ||Te_{j_0}||_{\infty} + \varepsilon.$

As ε is arbitrary, we get (3). Therefore (2) and (3) follow the assertion.

Theorem 2.5. For $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$ and $i \in \mathbb{N}$, we have

$$a \leq \sum_{j \in I^-} (T\mathbf{e}_j)(i) \leq 0 \leq \sum_{j \in I^+} (T\mathbf{e}_j)(i) \leq b,$$

where $I^+ = \{j \in \mathbb{N} : (Te_j)(i) > 0\}, I^- = \{j \in \mathbb{N} : (Te_j)(i) < 0\}.$

Proof. Let $i \in \mathbb{N}$ and $F \subseteq I^-$ be a nonempty finite set. Since for $j_0 \in \mathbb{N}$, $\sum_{j \in F} e_j \sim_c e_{j_0}$ hence

$$\operatorname{co}\left(\sum_{j\in F} T\mathbf{e}_j\right) = \operatorname{co}(T\mathbf{e}_{j_0}).$$

It follows

$$\sum_{j\in F} (T\mathbf{e}_j)(i) \in \operatorname{Im}\left(\sum_{j\in F} T\mathbf{e}_j\right) \subseteq \operatorname{co}\left(\sum_{j\in F} T\mathbf{e}_j\right) = \operatorname{co}\left(T\mathbf{e}_{j_0}\right)$$

Hence $a = \inf_{i \in \mathbb{N}} (Te_{j_0})(i) \le \sum_{j \in F} (Te_j)(i) \le 0$. Since the latter inequality holds for all finite subsets $F \subseteq I^-$, we have $a \le \sum_{i \in I^-} (T\mathbf{e}_j)(i) \le 0.$

The other inequality follows by a similar argument. \Box

Corollary 2.6. Let $T \in \mathcal{P}_{ce}(c_0)$. Then any row sums of T belong to [a, b].

Proof. By adding two inequalities in Theorem 2.5, we get the assertion. \Box

Lemma 2.7. Let $j \in \mathbb{N}$ and $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$. Then $0 \in \text{Im}(Te_j)$.

Proof. Let $j_1, j_2 \in \mathbb{N}$ be distinct. If a = b = 0, then $Te_{j_1} = 0$ and the assertion follows. Otherwise, a < 0 or b > 0. For $j \in \mathbb{N}$, as $a = \inf_{i \in \mathbb{N}} (Te_j)(i)$ and $b = \sup_{i \in \mathbb{N}} (Te_j)(i)$, we have $||Te_j||_{\infty} = \max\{b, -a\} > 0$. Now if $||Te_{j_2}||_{\infty} = b > 0$, then there is $i_0 \in \mathbb{N}$ such that $(Te_{j_2})(i_0) = b$. Applying Theorem 2.2, we conclude

that

$$b = |(Te_{j_2})(i_0)| \le \sum_{j=1}^{\infty} |(Te_j)(i_0)| \le ||Te_{j_2}||_{\infty} = b.$$

The latter inequalities lead to $|(Te_j)(i_0)| = 0$ for any $j \neq j_2$. Therefore $(Te_{j_1})(i_0) = 0$, it implies that $0 \in \text{Im}(Te_{j_1})$. For $||Te_{j_2}||_{\infty} = -a > 0$, the assertion follows by a similar argument. \Box

Lemma 2.8. Let $j \in \mathbb{N}$ and $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$. Then $a, b \in \text{Im}(Te_j)$ and $\text{co}(Te_j) = [a, b]$.

Proof. According to Remark 1.5 we have $co(Te_j) = I$, where I is a bounded interval and $a = \inf I$ and $b = \sup I$. Since $Te_j \in c_0$, it follows that zero can be at most a limit point of $Im(Te_j)$ and $a \le 0 \le b$. If a < 0, then a can not be a limit point of $Im(Te_j)$. As $a = \inf_{i \in \mathbb{N}} (Te_j)(i)$, we have $a \in Im(Te_j)$. If a = 0, Lemma 2.7 implies that $a = 0 \in Im(Te_j)$. By a similar argument, $b \in Im(Te_j)$. Therefore $co(Te_j) = [a, b]$.

Corollary 2.9. For $j \in \mathbb{N}$ and $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$, we have $\min_{i \in \mathbb{N}} (T\mathbf{e}_j)(i) = a$ and $\max_{i \in \mathbb{N}} (T\mathbf{e}_j)(i) = b$.

Theorem 2.10. Let $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$ and a < 0 < b. Then for distinct $j_1, j_2 \in \mathbb{N}$, we have

$$\max_{i \in \mathbb{N}} \left\{ \frac{1}{a} (T \mathbf{e}_{j_1})(i) + \frac{1}{b} (T \mathbf{e}_{j_2})(i) \right\} = 1$$

Proof. By Lemma 2.8, it follows that

$$\max_{i \in \mathbb{N}} \left\{ \frac{1}{a} (Te_{j_1})(i) \right\} = \max_{i \in \mathbb{N}} \left\{ \frac{1}{b} (Te_{j_2})(i) \right\} = 1.$$
(6)

Since $Te_{j_1} \in \mathfrak{c}_0$, it follows that for arbitrary $0 < \varepsilon < 1$, there is $m \in \mathbb{N}$ such that

$$\left|\frac{1}{a}(T\mathbf{e}_{j_1})(i)\right| < \varepsilon, \qquad \text{for all } i > m.$$
(7)

Theorem 2.2 implies that $\sum_{i \in \mathbb{N}} |(Te_i)(i)| < \infty$, for all $i \in \mathbb{N}$. So there exists $n \in \mathbb{N}$ such that

$$\left|\frac{1}{b}(T\mathbf{e}_j)(i)\right| < \varepsilon, \quad \text{for all } i \in \{1, \dots, m\} \text{ and } j > n.$$
(8)

Assume that $j_0 > n$ and $j_0 \neq j_1$, then (7) and (8) imply that for all $i \in \mathbb{N}$,

$$\frac{1}{a}(Te_{j_1})(i) + \frac{1}{b}(Te_{j_0})(i) \le 1 + \varepsilon, \quad \text{for } i \in \{1, \dots, m\},$$
(9)
$$\frac{1}{a}(Te_{j_1})(i) + \frac{1}{b}(Te_{j_0})(i) \le \varepsilon + 1, \quad \text{for } i > m.$$
(10)

As $\frac{1}{a}Te_{j_1} + \frac{1}{b}Te_{j_2} \sim_c \frac{1}{a}Te_{j_1} + \frac{1}{b}Te_{j_0}$, for all $\varepsilon > 0$, the relations (9) and (10) imply that

$$\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}(Te_{j_1})(i) + \frac{1}{b}(Te_{j_2})(i)\right\} = \sup_{i\in\mathbb{N}}\left\{\frac{1}{a}(Te_{j_1})(i) + \frac{1}{b}(Te_{j_0})(i)\right\} \le \varepsilon + 1.$$

Since $\varepsilon > 0$ is arbitrary, we have

$$\sup_{i \in \mathbb{N}} \left\{ \frac{1}{a} (Te_{j_1})(i) + \frac{1}{b} (Te_{j_2})(i) \right\} = \sup_{i \in \mathbb{N}} \left\{ \frac{1}{a} (Te_{j_1})(i) + \frac{1}{b} (Te_{j_0})(i) \right\} \le 1.$$
(11)

On the other hand, (6) yields that there is $i_0 \in \mathbb{N}$ such that $\frac{1}{a}(Te_{j_1})(i_0) = 1$. In (7), as $\varepsilon < 1$, we have $i_0 \in \{1, \ldots, m\}$ and so (8) concluds $\frac{1}{a}(Te_{j_1})(i_0) + \frac{1}{b}(Te_{j_0})(i_0) \ge 1 - \varepsilon$, thus for all $\varepsilon > 0$, we have

$$\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}(T\mathbf{e}_{j_1})(i)+\frac{1}{b}(T\mathbf{e}_{j_2})(i)\right\}=\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}(T\mathbf{e}_{j_1})(i)+\frac{1}{b}(T\mathbf{e}_{j_0})(i)\right\}\geq 1-\varepsilon,$$

since $\varepsilon > 0$ is arbitrary, so

$$\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}(T\mathbf{e}_{j_1})(i)+\frac{1}{b}(T\mathbf{e}_{j_2})(i)\right\}=\sup_{i\in\mathbb{N}}\left\{\frac{1}{a}(T\mathbf{e}_{j_1})(i)+\frac{1}{b}(T\mathbf{e}_{j_0})(i)\right\}\geq 1,$$

226

together (11) follow that $\sup_{i \in \mathbb{N}} \left\{ \frac{1}{a} (Te_{j_1})(i) + \frac{1}{b} (Te_{j_2})(i) \right\} = 1$. As $Te_j \in \mathfrak{c}_0$, so 1 is not a limit point of $\operatorname{Im} \left\{ \frac{1}{a} Te_{j_1} + \frac{1}{b} Te_{j_2} \right\}$, so $1 \in \operatorname{Im} \left\{ \frac{1}{a} Te_{j_1} + \frac{1}{b} Te_{j_2} \right\}$, that is

$$\max_{i \in \mathbb{N}} \left\{ \frac{1}{a} (T \mathbf{e}_{j_1})(i) + \frac{1}{b} (T \mathbf{e}_{j_2})(i) \right\} = 1.$$

227

Theorem 2.11. Let $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$ and a < 0 < b. Then for $i \in \mathbb{N}$, we have

$$\frac{1}{a} \sum_{j \in I^-} (T \mathbf{e}_j)(i) + \frac{1}{b} \sum_{j \in I^+} (T \mathbf{e}_j)(i) \le 1,$$

Proof. By Theorem 2.5, for $I^+ = \emptyset$, and $i \in \mathbb{N}$, we have $a \leq \sum_{j \in I^-} (Te_j)(i) \leq 0$. Multiplying the latter inequalities by $\frac{1}{2}$ we get the assertion. For $I^- = \emptyset$ the assertion follows by a similar argument

by $\frac{1}{a}$, we get the assertion. For $I^- = \emptyset$, the assertion follows by a similar argument. We now suppose that I^+ and I^- are both nonempty. Let $E \subseteq I^+$ and $F \subseteq I^-$, where E and F are nonempty finite sets. For distinct $j_1, j_2 \in \mathbb{N}$, as $\frac{1}{a} \sum_{j \in F} e_j + \frac{1}{b} \sum_{j \in E} e_j \sim_c \frac{1}{a} e_{j_1} + \frac{1}{b} e_{j_2}$, it follows that $\frac{1}{a} \sum_{j \in F} Te_j + \frac{1}{b} \sum_{j \in E} Te_j \sim_c \frac{1}{a} e_{j_1} + \frac{1}{b} e_{j_2}$, it follows that $\frac{1}{a} \sum_{j \in F} Te_j + \frac{1}{b} \sum_{j \in E} Te_j \sim_c \frac{1}{a} e_{j_1} + \frac{1}{b} e_{j_2}$.

 $\frac{1}{a}Te_{j_1} + \frac{1}{b}Te_{j_2}$. Theorem 2.10 together the latter formula follow that for $i \in \mathbb{N}$, we have

$$\frac{1}{a}\sum_{j\in F} (T\mathbf{e}_j)(i) + \frac{1}{b}\sum_{j\in E} (T\mathbf{e}_j)(i) \le \max_{i\in\mathbb{N}} \left\{ \frac{1}{a} (T\mathbf{e}_{j_1})(i) + \frac{1}{b} (T\mathbf{e}_{j_2})(i) \right\} = 1.$$

Since the above inequality holds for any finite subsets $F \subseteq I^-$ and $E \subseteq I^+$, we get

$$\frac{1}{a} \sum_{j \in I^-} (T\mathbf{e}_j)(i) + \frac{1}{b} \sum_{j \in I^+} (T\mathbf{e}_j)(i) \le 1.$$

Corollary 2.12. Let $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$ and T consider in the matrix form. Then the following sentences hold.

- (i) If a < 0, then in any row of T which appears a, the other entries equal zero.
- (ii) If b > 0, then in any row of T which appears b, the other entries equal zero.

Proof. For part (i), let a < 0 and it appears in the row $i \in \mathbb{N}$. If b = 0, then $I^+ = \emptyset$ and $I^- \neq \emptyset$. On the other hand, Theorem 2.5 implies that $a \leq \sum_{j \in I^-} (Te_j)(i)$, where $(Te_j)(i) \leq 0$, for all $j \in I^-$ and one of them is equal to a, then we have $\sum_{j \in I^-} (Te_j)(i) = a$. Let $j_0 \in I^-$ be such that $(Te_{j_0})(i) = a$, it follows that $a = \sum_{\substack{j \in I^- \\ j \neq j_0}} (Te_j)(i) + a$. This concludes that $(Te_j)(i) = 0$, for all $j \in \mathbb{N}$ with $j \neq j_0$.

If b > 0, Theorem 2.11 follows that

$$\sum_{j\in I^-} \frac{(T\mathbf{e}_j)(i)}{a} + \sum_{j\in I^+} \frac{(T\mathbf{e}_j)(i)}{b} \le 1.$$

As all the elements of both series are nonnegative and there is $j_0 \in I^-$ such that $(Te_{j_0})(i) = a$, it gives $(Te_j)(i) = 0$, for all $j \in \mathbb{N}$ with $j \neq j_0$. This completes the proof of part (i). By applying similar arguments, the assertion (ii) follows. \Box

The following theorem and Theorem 1.8 characterize the set $\mathcal{P}_{ce}(\mathfrak{c}_0)$.

Theorem 2.13. We have $\mathcal{P}_{cm}(\mathfrak{c}_0) = \mathcal{P}_{ce}(\mathfrak{c}_0)$.

Proof. Obviously, $\mathcal{P}_{cm}(\mathfrak{c}_0) \subseteq \mathcal{P}_{ce}(\mathfrak{c}_0)$. Now suppose that $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$. Corollary 2.9 implies that $\min_{i \in \mathbb{N}} (Te_j)(i) = a$ and $\max_{i \in \mathbb{N}} (Te_j)(i) = b$, for any $j \in \mathbb{N}$. If a < 0 < b, according to Theorems 1.8 and 2.11, we have $T \in \mathcal{P}_{cm}(\mathfrak{c}_0)$, and if a < 0 = b, it follows $I^+ = \emptyset$, and if a = 0 < b, it follows $I^- = \emptyset$, now we can use Theorems 1.8 and 2.5 to get $T \in \mathcal{P}_{cm}(\mathfrak{c}_0)$. That is $\mathcal{P}_{ce}(\mathfrak{c}_0) \subseteq \mathcal{P}_{cm}(\mathfrak{c}_0)$, which follows that $\mathcal{P}_{cm}(\mathfrak{c}_0) = \mathcal{P}_{ce}(\mathfrak{c}_0)$.

3. Characterization of strong preservers of convex equivalent on c_0

As we mentioned, the set of all bounded linear operators $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ which strongly preserve convex majorization is denoted by $\mathcal{P}_{scm}(\mathfrak{c}_0)$, that is $f \prec_c g$ if and only if $Tf \prec_c Tg$, for $f, g \in \mathfrak{c}_0$, and the set of all bounded linear operators $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ which strongly preserve convex equivalent is denoted by $\mathcal{P}_{sce}(\mathfrak{c}_0)$, that is

$$f \sim_c g$$
 if and only if $Tf \sim_c Tg$.

The aim of this section is to study some important properties of $\mathcal{P}_{sce}(\mathfrak{c}_0)$ and characterize the elements of $\mathcal{P}_{scm}(\mathfrak{c}_0)$ and $\mathcal{P}_{sce}(\mathfrak{c}_0)$.

Obviously the following sentences are satisfied.

- $\mathcal{P}_{scm}(\mathfrak{c}_0) \subseteq \mathcal{P}_{sce}(\mathfrak{c}_0) \subseteq \mathcal{P}_{ce}(\mathfrak{c}_0).$
- $\mathcal{P}_{scm}(\mathfrak{c}_0)$ and $\mathcal{P}_{sce}(\mathfrak{c}_0)$ are both closed under the combination and nonzero scalar multiplication.
- If $T \in \mathcal{P}_{sce}(\mathfrak{c}_0)$, then $\operatorname{Ker}(T) = \{0\}$.

Example 3.1. In Example 1.4, we get the right shift operator on c_0 defined by

 $Tf = (0, f_1, f_2, ...),$ for all $f \in c_0$,

preserves convex equivalent. Now let $f = (1, \frac{1}{2}, \frac{1}{3}, ...)$ and $g = (0, 1, \frac{1}{2}, \frac{1}{3}, ...)$. Then we have co(Tf) = co(Tg) = [0, 1] and so $Tf \sim_c Tg$. But $f \neq_c g$. Therefore $T \notin \mathcal{P}_{sce}(c_0)$. That is $\mathcal{P}_{sce}(c_0)$ is a proper subset of $\mathcal{P}_{ce}(c_0)$.

Lemma 3.2. If $T \in \mathcal{P}_{sce}(\mathfrak{c}_0)$, then $a \neq -b$.

Proof. On the contrary suppose that, a = -b. Then we have

$$\operatorname{co}(T\mathbf{e}_j) = \operatorname{co}(T(-\mathbf{e}_j)) = [a, b],$$

which implies that $Te_j \sim_c T(-e_j)$, but we have $e_j \not\sim_c -e_j$. This is a contradiction. \Box

For $T \in \mathcal{P}_{sce}(\mathfrak{c}_0)$, we need some lemmas to prove that a = 0 < b or a < 0 = b.

Lemma 3.3. Let $T \in \mathcal{P}_{ce}(\mathfrak{c}_0)$, a < 0 < b and $\alpha \leq \min\left\{\frac{a}{b}, \frac{b}{a}\right\}$. Let $j_1, j_2 \in \mathbb{N}$ be distinct and $g = \alpha \mathbf{e}_{j_1} + \mathbf{e}_{j_2}$, then we have $\alpha b \leq \inf Tg \leq \sup Tg \leq \alpha a$.

Proof. Suppose that $0 < \varepsilon \le \min\{-a, b\}$. Since $Te_{j_1} \in c_0$, there is an $n \in \mathbb{N}$, such that for all i > n, we have $|(Te_{j_1})(i)| < \frac{\varepsilon}{-\alpha} \le \varepsilon$. Theorem 2.2 implies that all rows of the matrix form of *T* belong to ℓ^1 . Hence there is $j_0 \in \mathbb{N}$, $(j_0 \neq j_1)$ such that $|(Te_{j_0})(i)| < \varepsilon$, for all $i \in \{1, ..., n\}$. We now investigate the following two cases for $i \in \mathbb{N}$:

Case 1: Let $i \in \{1, ..., n\}$. As $a \leq (Te_{j_1})(i) \leq b$ and $|(Te_{j_0})(i)| < \varepsilon$, we have

$$\alpha b - \varepsilon \le \alpha (Te_{j_1})(i) + (Te_{j_0})(i) \le \alpha a + \varepsilon.$$
(12)

Case 2: Let $i \in \mathbb{N} \setminus \{1, ..., n\}$. Since $|(Te_{j_1})(i)| < \frac{\varepsilon}{-\alpha}$ and $a \leq (Te_{j_0})(i) \leq b$, it follows

 $a - \varepsilon \le \alpha (Te_{i_1})(i) + (Te_{i_2})(i) \le b + \varepsilon.$ (13)

Therefore (12) and (13) deduce that

$$\alpha b - \varepsilon = \min\{\alpha b - \varepsilon, a - \varepsilon\} \le \alpha (Te_{i_1})(i) + (Te_{i_2})(i) \le \max\{\alpha a + \varepsilon, b + \varepsilon\} = \alpha a + \varepsilon.$$

Since ε is arbitrary, it follows that

 $\operatorname{co}(Tg) = \operatorname{co}(\alpha Te_{i_1} + Te_{i_2}) = \operatorname{co}(\alpha Te_{i_1} + Te_{i_0}) \subseteq [\alpha b, \alpha a].$

This gives the assertion. \Box

Lemma 3.4. If $T \in \mathcal{P}_{ce}(c_0)$ and min $Te_j = a < 0 < b = \max Te_j$, then $T \notin \mathcal{P}_{sce}(c_0)$.

Proof. Let $\alpha = \min \left\{ \frac{a}{b}, \frac{b}{a} \right\}$ and for distinct natural numbers j_1, j_2 , define $f = \alpha e_{j_1}$ and $g = \alpha e_{j_1} + e_{j_2}$. Thus $Tf = \alpha Te_{j_1}$, which implies $\operatorname{co}(Tf) = \operatorname{co}(\alpha Te_{j_1}) = \alpha[a, b] = [\alpha b, \alpha a]$. Corollary 2.9 implies that there are $i_1, i_1^* \in \mathbb{N}$ such that $(Te_{j_1})(i_1) = a$ and $(Te_{j_1})(i_1^*) = b$. Also, Corollary 2.12 concludes that $(Te_{j_2})(i_1) = (Te_{j_2})(i_1^*) = 0$ and so

$$\alpha a = \alpha (Te_{j_1})(i_1) + (Te_{j_2})(i_1) \in \operatorname{co}(Tg),$$

$$\alpha b = \alpha (Te_{j_1})(i_1^*) + (Te_{j_2})(i_1^*) \in \operatorname{co}(Tg).$$
(14)
(15)

Lemma 3.3 together (14) and (15) imply that $co(Tg) = [\alpha b, \alpha a] = co(Tf)$. Which follows that $Tf \sim_c Tg$, although $f \nsim_c g$. This means that $T \notin \mathcal{P}_{sce}(\mathfrak{c}_0)$. \Box

In the following, we obtain some results of Lemma 3.4.

Theorem 3.5. *If* $T \in \mathcal{P}_{sce}(c_0)$ *, then* a = 0 < b *or* a < 0 = b*.*

Proof. Obviously $a \le 0 \le b$. Lemma 3.4 implies that $a = 0 \le b$ or $a \le 0 = b$. It is impossible a = b = 0, because it follows that $T \equiv 0$ and so T is not in $\mathcal{P}_{sce}(\mathfrak{c}_0)$. This completes the proof. \Box

Theorem 3.6. If $T \in \mathcal{P}_{sce}(c_0)$, then the matrix representation of T does not contain zero row.

Proof. Suppose, contrary to our claim, that all the entries of the i_0 th row of T are equal to zero. Let $f = (1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...) \in c_0$. So for any $j \in \mathbb{N}$, Theorem 3.5 implies that

$$co(Te_j) = [a, 0] = co(Tf), \text{ or } co(Te_j) = [0, b] = co(Tf),$$

which follows $Te_i \sim_c Tf$, but $f \neq_c e_j$. That is $T \notin \mathcal{P}_{sce}(\mathfrak{c}_0)$, which is a contradiction. \Box

Example 3.7. Let $T : c_0 \rightarrow c_0$ be a bounded linear operator defined by

 $Tf = (2f_1, 2f_1, 2f_2, 2f_2, 2f_3, 2f_3, \ldots),$ for all $f \in c_0$.

Then we have co(Tf) = 2co(f) and obviously $T \in \mathcal{P}_{sce}(\mathfrak{c}_0)$.

In this part, we recall the generalization of convex combination.

Definition 3.8. Let X be a normed linear space and $A \subseteq X$. The countable convex hull of A is defined as follows

$$\operatorname{cco}(A) = \left\{ \sum_{i=1}^{\infty} \alpha_i x_i : x_i \in A, \ \alpha_i \ge 0, \ \sum_{i=1}^{\infty} \alpha_i = 1, \ \sum_{i=1}^{\infty} \alpha_i x_i \text{ converges} \right\}.$$

It is easy to check that for $A \subseteq \mathbb{R}$, we have cco(A) = co(A).

Lemma 3.9. [3, Lemma 2.6] Let $x \in c_0$, $\alpha_i \ge 0$ and $0 < \sum_{i=1}^{\infty} \alpha_i \le 1$. Then $\sum_{i=1}^{\infty} \alpha_i x(i) \in co(x)$.

Let \mathcal{E} denote the set of all bounded linear operators $T : \mathfrak{c}_0 \to \mathfrak{c}_0$ satisfy $\operatorname{co}(Tf) = \operatorname{co}(f)$, for all $f \in \mathfrak{c}_0$. In [3], Bayati et al. proved that $\mathcal{E} \subseteq \mathcal{P}_{cm}(\mathfrak{c}_0)$ and any permutation lies in \mathcal{E} , also proved the following theorems.

Theorem 3.10. [3, Theorem 2.20] If $T \in \mathcal{E}$, then

- (i) for all $j \in \mathbb{N}$, $\min_{i \in \mathbb{N}} \{ (Te_j)(i) \} = 0$, and $\max_{i \in \mathbb{N}} \{ (Te_j)(i) \} = 1$.
- (ii) if $((Te_j)(i))_{j \in \mathbb{N}}$ is the *i*th row of the matrix form of *T*, then $\sum_{i \in \mathbb{N}} (Te_j)(i) \le 1$.

Theorem 3.11. [3, Theorem 2.22 and Remark 2.23] If $T \in \mathcal{E}$, then the matrix form of T has no zero row and any row sum of T belongs to [0, 1].

Theorems 3.10 and 3.11 imply the following theorem.

Theorem 3.12. Let $T : c_0 \to c_0$ be a bounded linear operator. Then $T \in \mathcal{E}$ if and only if

- (i) for all $j \in \mathbb{N}$, we have $\min_{i \in \mathbb{N}} \{ (Te_j)(i) \} = 0$, and $\max_{i \in \mathbb{N}} \{ (Te_j)(i) \} = 1$.
- (ii) any row sum of T belongs to (0, 1], i.e., $0 < \sum_{j \in \mathbb{N}} (Te_j)(i) \le 1$, for any $i \in \mathbb{N}$.

Proof. Let $T \in \mathcal{E}$. Theorems 3.10 and 3.11 imply (i), (ii). Now let (i), (ii) hold and $f \in \mathfrak{c}_0$. By (i), for $j_0 \in \mathbb{N}$ there

is $i_0 \in \mathbb{N}$, such that $(Te_{j_0})(i_0) = 1$. Part (ii) implies that $\sum_{j \in \mathbb{N}} (Te_j)(i_0) \le 1$ and $0 \le (Te_j)(i_0) \le 1$, $(Te_{j_0})(i_0) = 1$, so $(Te_j)(i_0) = 0$, for all $j \in \mathbb{N} \setminus \{j_0\}$. Therefore $(Tf)(i_0) = \sum_{j \in \mathbb{N}} (Te_j)(i_0)f(j) = f(j_0)$ and so $\operatorname{Im}(f) \subseteq \operatorname{Im}(Tf)$, and so

 $co(f) \subseteq co(Tf)$. Now for any $i \in \mathbb{N}$, we have $0 < \sum_{j \in \mathbb{N}} (Te_j)(i) \leq 1$. According to Lemma 3.9 we have (Tf)(i) =

 $\sum_{i=1}^{\infty} (Te_i)(i)f(j) \in co(f) \text{ and so } co(Tf) \subseteq co(f). \text{ Therefore } co(Tf) = co(f), \text{ i.e., } T \in \mathcal{E}. \quad \Box$

In the following theorem, we characterize the elements of $\mathcal{P}_{sce}(\mathfrak{c}_0)$.

Theorem 3.13. $\mathcal{P}_{sce}(\mathfrak{c}_0) = \{\lambda T : \lambda \in \mathbb{R} \setminus \{0\}, T \in \mathcal{E}\}.$

Proof. It is easy to show that $\{\lambda T : \lambda \in \mathbb{R} \setminus \{0\}, T \in \mathcal{E}\} \subseteq \mathcal{P}_{sce}(\mathfrak{c}_0)$. Now, let $T \in \mathcal{P}_{sce}(\mathfrak{c}_0)$. The fact $\mathcal{P}_{sce}(\mathfrak{c}_0) \subseteq \mathcal{P}_{ce}(\mathfrak{c}_0)$ and Theorems 1.8, 2.13, 3.5, 3.6 and 3.12 imply that $\frac{1}{b}T \in \mathcal{E}$, whenever a = 0 < b and $\frac{1}{a}T \in \mathcal{E}$, whenever a < 0 = b.

As a consequence of Theorem 3.13, we obtain the next theorem.

Theorem 3.14. $\mathcal{P}_{scm}(\mathfrak{c}_0) = \mathcal{P}_{sce}(\mathfrak{c}_0).$

Proof. It is easy to show that $\mathcal{P}_{scm}(\mathfrak{c}_0) \subseteq \mathcal{P}_{sce}(\mathfrak{c}_0)$. Now suppose that $T \in \mathcal{P}_{sce}(\mathfrak{c}_0)$. Theorem 3.13 implies that $T = \lambda T_1$, for some $\lambda \neq 0$ and $T_1 \in \mathcal{E}$. Hence $\operatorname{co}(Tf) = \operatorname{co}(\lambda T_1(f)) = \lambda \operatorname{co}(T_1(f)) = \lambda \operatorname{co}(f)$. So $f \prec_c g$ if and only if $co(Tf) = \lambda co(f) \subseteq \lambda co(g) = co(Tg)$, that is $T \in \mathcal{P}_{scm}(\mathfrak{c}_0)$. \Box

The above two theorem characterize the elements of $\mathcal{P}_{scm}(\mathfrak{c}_0)$.

Acknowledgment

This work has been financially supported by the research deputy of Shahrekord university. The grant number was 95GRN1M1979.

230

References

- [1] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra and its Applications 199 (1994) 17-67.
- [2] F. Bahrami, A. Bayati, S. M. Manjegani, Linear preservers of majorization on l^p(I), Linear Algebra and its Applications 436 (2012) 3177–3195.
- [3] A. Bayati Eshkaftaki, N. Eftekhari, Characterization of linear preservers of generalized majorization on c₀, Filomat 31 (2017) no.15, 4979–4988.
- [4] A. Bayati Eshkaftaki, N. Eftekhari, Characterization of two-sided order preserving of convex majorization on l^p(l), Filomat 31 (2017) no.18, 5703–5710.
- [5] L. B. Beasley, S. -G. Lee, Y. -H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra and its Applications 367 (2003) 341–346.
- [6] G. Dahl, Matrix majorization, Linear Algebra and its Applications 288 (1999) 53-73.
- [7] N. Eftekhari, A. Bayati Eshkaftaki, Isotonic linear operators on the space of all convergent real sequences, Linear Algebra and its Applications 506 (2016) 535–550.
- [8] A. W. Marshall, I. Olkin, B.C. Arnold, Inequalities; Theory of Majorization and its Application, Academic Press, New York, 1979.
- [9] S. Pierce, A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992) (1-2).
- [10] A. E. Taylor, D. Lay, Introduction to functional analysis, Old school classic, (2nd edition), 1986.