Characterization of Strong Preserver Operators of Convex Equivalent on the Space of All Real Sequences Tend to Zero

Noha Eftekhari ${ }^{\text {a }}$, Ali Bayati Eshkaftaki ${ }^{\text {a }}$
${ }^{a}$ Department of Pure Mathematics, Faculty of Mathematical Sciences, Shahrekord University, P.O. Box 115, Shahrekord, 88186-34141, Iran

Abstract

In this work we consider all bounded linear operators $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ that preserve convex equivalent relation \sim_{c} on c_{0} and we denote by $\mathcal{P}_{c e}\left(c_{0}\right)$ the set of such operators. If T strongly preserves convex equivalent, we denote them by $\mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$. Some interesting properties of $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ are given. For $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, we show that all rows of T belong to ℓ^{1} and for any $j \in \mathbb{N}$, we have $0 \in \operatorname{Im}\left(T \mathrm{e}_{j}\right)$, also there are $a, b \in \operatorname{Im}\left(T \mathrm{e}_{j}\right)$ such that $\operatorname{co}\left(T \mathrm{e}_{j}\right)=[a, b]$. It is shown that all row sums of T belong to $[a, b]$. We characterize the elements of $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, and some interesting results of all $T \in \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$ are given, for example we prove that $a=0<b$ or $a<0=b$. Also the elements of $\mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$ are characterized. We obtain the matrix representation of $T \in \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$ does not contain any zero row. Some relevant examples are given.

1. Introduction

Throughout this work, \mathfrak{c}_{0} is the Banach space of all real sequences converge to zero with the supremum norm. An element $x \in \mathfrak{c}_{0}$ can be represented by $\sum_{i \in \mathbb{N}} x(i) \mathrm{e}_{i}$, where $\mathrm{e}_{i}: \mathbb{N} \rightarrow \mathbb{R}$ is defined by $\mathrm{e}_{i}(j)=\delta_{i j}$, the Kronecker delta. For $x \in \mathfrak{c}_{0}$, we write $\operatorname{co}(x)$, instead of the convex combination of the set $\operatorname{Im}(x)=\{x(i): i \in \mathbb{N}\}$.

Let $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ be a bounded linear operator. It is easy to show that, T is represented by a matrix $\left(t_{i j}\right)_{i, j \in \mathbb{N}}$ in the sense that

$$
(T x)(i)=\sum_{j \in \mathbb{N}} t_{i j} x(j), \quad \text { for } x \in \mathfrak{c}_{0} \text { and } i \in \mathbb{N}
$$

where $t_{i j}=\left(T \mathrm{e}_{j}\right)(i)$. To simplify, we will incorporate T to its matrix form $\left(t_{i j}\right)_{i, j \in \mathbb{N}}$.
Definition 1.1. [3] For $x, y \in \mathfrak{c}_{0}$, we say that x is convex majorized by y, and denoted by $x<_{c} y$, if $\operatorname{co}(x) \subseteq \operatorname{co}(y)$ and x is said to be convex equivalent to y, denoted by $x \sim_{c} y$, whenever $x<_{c} y<_{c} x$, i.e., $\operatorname{co}(x)=\operatorname{co}(y)$.

The relation \sim_{c} is an equivalent relation on \mathfrak{c}_{0}. For $x \in \mathfrak{c}_{0}$, if $0 \in \operatorname{co}(x)$, then $\operatorname{co}(x)=[a, b]$, for some $a, b \in \mathbb{R}$ with $a \leq 0 \leq b$, and if $0 \notin \operatorname{co}(x)$, then $\operatorname{co}(x)$ is equal to either $[a, 0)$, for some $a<0$, or $(0, b]$, for some $b>0$.

[^0]Definition 1.2. [5] Let \mathcal{R} be a relation on \mathfrak{c}_{0}. The linear operator $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ is said preserve \mathcal{R} if for each $x, y \in \mathfrak{c}_{0}$,
$\mathcal{R}(x, y)$ implies $\mathcal{R}(T x, T y)$,
and T is called strongly preserve \mathcal{R} if
$\mathcal{R}(x, y)$ if and only if $\mathcal{R}(T x, T y)$.
The set of all bounded linear operators $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ which preserve convex majorization, convex equivalent, strongly preserve convex majorization and strongly preserve convex equivalent denoted by $\mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right), \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right), \mathcal{P}_{s c m}\left(\mathfrak{c}_{0}\right)$ and $\mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$, respectively. Obviously, $\mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right) \subseteq \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right), \mathcal{P}_{s c m}\left(\mathfrak{c}_{0}\right) \subseteq \mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$ and $\mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right) \subseteq \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.

Example 1.3. Let $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ be defined by $T x=\left(a x_{1}, b x_{1}, a x_{2}, b x_{2}, \ldots\right)$, for $a, b \in \mathbb{R}$ and $x=\left(x_{1}, x_{2}, \ldots\right) \in \mathfrak{c}_{0}$. Clearly $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.
In general case, let $\left(n_{k}\right)$ be a bounded sequence in \mathbb{N}. The operator $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ defined by

$$
T x=(\underbrace{a x_{1}, \ldots, a x_{1}}_{n_{1}}, \underbrace{b x_{1}, \ldots, b x_{1}}_{n_{2}}, \underbrace{a x_{2}, \ldots, a x_{2}}_{n_{3}}, \underbrace{b x_{2}, \ldots, b x_{2}}_{n_{4}}, \ldots)
$$

lies in $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, for $x=\left(x_{1}, x_{2}, \ldots\right) \in \mathfrak{c}_{0}$.
Example 1.4. Let $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ be a bounded linear operator defined by $T x=\left(0, x_{1}, x_{2}, x_{3}, \ldots\right)$, for $x=\left(x_{1}, x_{2}, x_{3}, \ldots\right) \in$ \mathfrak{c}_{0}. It is easy to show that $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.

Remark 1.5. Note that for $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ and $j_{1}, j_{2} \in \mathbb{N}$, since $\operatorname{co}\left(T \mathrm{e}_{j_{1}}\right)=\operatorname{co}\left(T \mathrm{e}_{j_{2}}\right)$ holds because $\mathrm{e}_{j_{1}} \sim_{c} \mathbf{e}_{j_{2}}$, the values $a:=\inf T \mathrm{e}_{j}$ and $b:=\sup T \mathrm{e}_{j}$ are constants, independent of chosen $j \in \mathbb{N}$ (similarly as in [3, Remark 2.10]). That is, for $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, there is a bounded real interval I, such that $\operatorname{co}\left(T \mathrm{e}_{j}\right)=I$, for all $j \in \mathbb{N}$. Therefore $a=\inf I$, and $b=\sup I$, for any $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. Also, we define $I^{+}=\left\{j \in \mathbb{N}:\left(T \mathrm{e}_{j}\right)(i)>0\right\}$ and $I^{-}=\left\{j \in \mathbb{N}:\left(T \mathrm{e}_{j}\right)(i)<0\right\}$.

From now on a, b and I^{+}, I^{-}are as in Remark 1.5.
In [3], Bayati et al. characterized the elements of $\mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$ and obtained some properties of them as follows.

Theorem 1.6. [3, Theorem 2.8 and Corollary 2.9] For $T \in \mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$, all rows of T lie in ℓ^{1}. Moreover for any fixed $i \in \mathbb{N}$, we have $\sum_{j \in \mathbb{N}}\left|\left(T \mathrm{e}_{j}\right)(i)\right| \leq\|T\|$. Also, independent of chosen distinct $j_{1}, j_{2} \in \mathbb{N}$, we have $\left\|T \mathrm{e}_{j_{1}}-T \mathrm{e}_{j_{2}}\right\|=\|T\|$.

Theorem 1.7. [3, Theorem 2.13 and Lemma 2.14] Let $T \in \mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$. Then $\left\|T \mathrm{e}_{j}\right\|=\|T\|$ and $0 \in \operatorname{Im}\left(T \mathrm{e}_{j}\right)$, for all $j \in \mathbb{N}$.

Theorem 1.8. [3, Theorem 2.19] Let $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ be a linear operator. Then $T \in \mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$ if and only if
(i) for any $j \in \mathbb{N}$, the value of $\min _{i \in \mathbb{N}}\left(T \mathbf{e}_{j}\right)(i)$ exists and independent of $j \in \mathbb{N}$ is equal to a.
(ii) for any $j \in \mathbb{N}$, the value of $\max _{i \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i)$ exists and independent of $j \in \mathbb{N}$ is equal to b.
(iii) if $a<0<b$, we have $\frac{1}{a} \sum_{j \in I^{-}}\left(T \mathrm{e}_{j}\right)(i)+\frac{1}{b} \sum_{j \in I^{+}}\left(T \mathrm{e}_{j}\right)(i) \leq 1$; if $a<0=b$, then we have $\sum_{j \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i) \geq a$ and if $a=0<b$, then it implies $\sum_{j \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i) \leq b$,
where $\left(\left(T \mathrm{e}_{j}\right)(i)\right)_{j \in \mathbb{N}}$ is an arbitrary row of T.

Some of the results in this work are obtained by the similar technique developed in [3, 4, 7].
We organize this paper as follows. In Section 2 we extend some of recent results of bounded linear preservers of the convex majorization on \mathfrak{c}_{0} to the set of bounded linear operators which preserve convex equivalent on \mathfrak{c}_{0}, we denote this set by $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. It is shown that some of the above mentioned results are satisfied for $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. For $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, we show that all rows of T belong to ℓ^{1} and for any $j \in \mathbb{N}$, we have $0 \in \operatorname{Im}\left(T \mathrm{e}_{j}\right)$, also there are $a, b \in \operatorname{Im}\left(T \mathrm{e}_{j}\right)$ such that $\operatorname{co}\left(T \mathrm{e}_{j}\right)=[a, b]$. It is shown that any row sums of T belong to $[a, b]$. We characterize the elements of $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. Section 3 is devoted to study of the properties of strong preservers of convex equivalent on \mathfrak{c}_{0}, we denote this set by $\mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$. We investigate some interesting properties of $T \in \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$, and obtain that $a=0<b$ or $a<0=b$ for all $T \in \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$, also we prove the matrix representation of T does not contain any zero row. At the end, we characterize the set $\mathcal{P}_{\text {sce }}\left(c_{0}\right)$.

2. Some properties of the operators in $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$

The topic of linear preservers is of interest to a large group of matrix theorists. For a survey of linear preserver problems see [9], and for relative papers and book in the theory of majorization, see [1, 2, 6, 8].

In [3], Bayati et al. characterized the operators in $\mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$. In this section, we prove some properties of linear preservers of convex equivalent on \mathfrak{c}_{0} and characterize the operators in $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.

Remark 2.1. Some general properties of $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ are as follow.

- $0, \mathrm{id} \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.
- If $T_{1}, T_{2} \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, then $T_{1} \circ T_{2} \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.
- If $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, then $\lambda T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, for all $\lambda \in \mathbb{R}$.
- Any constant coefficient of a permutation on \mathfrak{c}_{0} lies in $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.

We now consider some important properties of $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.
Theorem 2.2. Let $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ be a bounded linear operator. Then for any $i \in \mathbb{N}$, we have $\sum_{j \in \mathbb{N}}\left|\left(T e_{j}\right)(i)\right| \leq\|T\|$, and moreover each row of T belongs to ℓ^{1}.

Proof. Let $i, j, n \in \mathbb{N}$. We set $\delta_{j}=\operatorname{sgn}\left(T \mathbf{e}_{j}\right)(i)$ and $x_{n}=\sum_{j=1}^{n} \delta_{j} \mathbf{e}_{j} \in \mathfrak{c}_{0}$. Then $T x_{n}=\sum_{j=1}^{n} \delta_{j} T \mathbf{e}_{j}$, and so $\left(T x_{n}\right)(i)=$ $\sum_{j=1}^{n} \delta_{j}\left(T \mathrm{e}_{j}\right)(i)=\sum_{j=1}^{n}\left|\left(T \mathrm{e}_{j}\right)(i)\right|$. Since $\left\|x_{n}\right\| \leq 1$, we have

$$
\left(T x_{n}\right)(i)=\sum_{j=1}^{n}\left|\left(T \mathrm{e}_{j}\right)(i)\right|=\left|\left(T x_{n}\right)(i)\right| \leq\left\|T x_{n}\right\| \leq\|T\|\left\|x_{n}\right\| \leq\|T\|
$$

Let n tend to infinity, so we have $\sum_{j=1}^{\infty}\left|\left(T \mathrm{e}_{j}\right)(i)\right| \leq\|T\|$, that is, all rows of T belong to ℓ^{1}.
Remark 2.3. Indeed, for a bounded linear operator $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$, we have $\|T\|=\sup _{i \in \mathbb{N}} \sum_{j \in \mathbb{N}}\left|\left(T \mathrm{e}_{j}\right)(i)\right|$. (see for instance [10, page 217, Theorem 4.51-c])

Theorem 2.4. Let $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. Then $\left\|T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right\|_{\infty}=\left\|T \mathrm{e}_{j}\right\|_{\infty}$ for any $j_{,} j_{0}, j_{0}^{\prime} \in \mathbb{N}$ with $j_{0} \neq j_{0}^{\prime}$.
Proof. If $T \equiv 0$, we are done. So suppose that $T \not \equiv 0$. Let $i_{0}, j_{1} j_{0}, j_{0}^{\prime} \in \mathbb{N}$, with $j_{0} \neq j_{0}^{\prime}$. Put

$$
\delta_{j}= \begin{cases}1 & \text { if } \mathrm{Te}_{j}\left(i_{0}\right) \geq 0 \\ -1 & \text { if } T \mathrm{e}_{j}\left(i_{0}\right)<0\end{cases}
$$

Then $\sum_{k=1}^{n} \delta_{j_{k}} \mathbf{e}_{j_{k}}$ is convex equivalent to either $\pm \mathbf{e}_{j_{0}}$ or $\mathrm{e}_{j_{0}}-\mathrm{e}_{j_{0}^{\prime}}$. Since $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, it follows from Theorem 2.2 that $\sum_{j \in \mathbb{N}}^{k=1}\left|\left(T \mathbf{e}_{j}\right)\left(i_{0}\right)\right|<\infty$. Thus for any $\varepsilon>0$, there exists $n \in \mathbb{N}$ such that for $j^{*}>n$, we have $\left|\left(T \mathrm{e}_{j^{*}}\right)\left(i_{0}\right)\right|<\varepsilon$. Define

$$
\delta^{*}=\left\{\begin{array}{lr}
-1 & \text { if } \delta_{j_{1}}=\cdots=\delta_{j_{n}}=1 \\
1 & \text { otherwise }
\end{array}\right.
$$

Since $\sum_{k=1}^{n} \delta_{j_{k}} \mathbf{e}_{j_{k}}+\delta^{*} \mathbf{e}_{j^{*}} \sim_{c} \mathbf{e}_{j_{0}}-\mathbf{e}_{j_{0}^{\prime}}$ for $j^{*} \neq j_{1}, \ldots, j_{n}$, it follows that

$$
\sum_{k=1}^{n} \delta_{j_{k}} T \mathrm{e}_{j_{k}}+\delta^{*} T \mathrm{e}_{j^{*}} \sim_{\mathcal{c}} T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}} .
$$

So

$$
\sum_{k=1}^{n}\left|\left(T \mathrm{e}_{j_{k}}\right)\left(i_{0}\right)\right|+\delta^{*}\left(T \mathrm{e}_{j^{*}}\right)\left(i_{0}\right) \in \operatorname{co}\left(\sum_{k=1}^{n} \delta_{j_{k}} T \mathrm{e}_{j_{k}}+\delta^{*} T \mathrm{e}_{j^{*}}\right)=\operatorname{co}\left(T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right),
$$

that yields

$$
\operatorname{dist}\left(\sum_{k=1}^{n}\left|\left(T \mathrm{e}_{j_{k}}\right)\left(i_{0}\right)\right|, \operatorname{co}\left(T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right)\right) \leq\left|\delta^{*}\left(T \mathrm{e}_{j^{*}}\right)\left(i_{0}\right)\right|=\left|\left(T \mathrm{e}_{j^{*}}\right)\left(i_{0}\right)\right|<\varepsilon
$$

As ε is arbitrary, the above distance equals zero and so

$$
\sum_{k=1}^{n}\left|\left(T \mathbf{e}_{j_{k}}\right)\left(i_{0}\right)\right| \in \overline{\operatorname{co}\left(T \mathbf{e}_{j_{0}}-T \mathbf{e}_{j_{0}^{\prime}}\right)}
$$

which implies that $\sum_{k=1}^{n}\left|\left(T \mathrm{e}_{j_{k}}\right)\left(i_{0}\right)\right| \leq\left\|T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right\|_{\infty}$. Let n tend to infinity, so we have

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left|\left(T \mathrm{e}_{j_{k}}\right)\left(i_{0}\right)\right| \leq\left\|T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right\|_{\infty} \tag{1}
\end{equation*}
$$

The inequality (1) implies that for any $i, j \in \mathbb{N}$, we have $\left|\left(T e_{j}\right)(i)\right| \leq\left\|T e_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right\|_{\infty}$, which follows that

$$
\begin{equation*}
\left\|T \mathrm{e}_{j}\right\|_{\infty} \leq\left\|T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right\|_{\infty} \tag{2}
\end{equation*}
$$

It is sufficient to show that

$$
\begin{equation*}
\left\|T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right\|_{\infty} \leq\left\|T \mathrm{e}_{j}\right\|_{\infty} \tag{3}
\end{equation*}
$$

Let $\varepsilon>0$. Since $T \mathrm{e}_{j} \in \mathfrak{c}_{0}$, there is $M \in \mathbb{N}$ such that for all $i>M$, we have

$$
\begin{equation*}
\left|T \mathrm{e}_{j}(i)\right|<\frac{\varepsilon}{2} \tag{4}
\end{equation*}
$$

On the other hand (1) implies that

$$
\lim _{j \rightarrow \infty}\left(T \mathrm{e}_{j}\right)(1)=0, \ldots, \lim _{j \rightarrow \infty}\left(T \mathrm{e}_{j}\right)(M)=0
$$

Hence there is $N \in \mathbb{N}$ such that for all $j>N$,

$$
\begin{equation*}
\left|\left(T \mathrm{e}_{j}\right)(1)\right|, \ldots,\left|\left(T \mathrm{e}_{j}\right)(M)\right|<\frac{\varepsilon}{2} \tag{5}
\end{equation*}
$$

The relations (4) and (5) yield that if $j^{*} \neq j_{0}, 1, \ldots, N$, then for all $i \in \mathbb{N}$, we have

$$
\begin{aligned}
\left|\left(T \mathrm{e}_{j_{0}}\right)(i)-\left(T \mathrm{e}_{j^{*}}\right)(i)\right| & \leq\left\{\begin{array}{cl}
\left|\left(T \mathrm{e}_{j_{0}}\right)(i)\right|+\frac{\varepsilon}{2} & \text { if } i \neq 1, \ldots, M \\
\frac{\varepsilon}{2}+\left|\left(T \mathrm{e}_{j^{*}}\right)(i)\right| & \text { if } i=1, \ldots, M
\end{array}\right. \\
& \leq\left\|T \mathrm{e}_{j_{0}}\right\|_{\infty}+\varepsilon,
\end{aligned}
$$

which follows

$$
\left\|T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j_{0}^{\prime}}\right\|_{\infty}=\left\|T \mathrm{e}_{j_{0}}-T \mathrm{e}_{j^{*}}\right\|_{\infty} \leq\left\|T \mathrm{e}_{j_{0}}\right\|_{\infty}+\varepsilon
$$

As ε is arbitrary, we get (3). Therefore (2) and (3) follow the assertion.
Theorem 2.5. For $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ and $i \in \mathbb{N}$, we have

$$
a \leq \sum_{j \in I^{-}}\left(T \mathrm{e}_{j}\right)(i) \leq 0 \leq \sum_{j \in I^{+}}\left(T \mathrm{e}_{j}\right)(i) \leq b,
$$

where $I^{+}=\left\{j \in \mathbb{N}:\left(T \mathrm{e}_{j}\right)(i)>0\right\}, I^{-}=\left\{j \in \mathbb{N}:\left(T \mathrm{e}_{j}\right)(i)<0\right\}$.
Proof. Let $i \in \mathbb{N}$ and $F \subseteq I^{-}$be a nonempty finite set. Since for $j_{0} \in \mathbb{N}, \sum_{j \in F} \mathbf{e}_{j} \sim_{c} \mathbf{e}_{j_{0}}$ hence

$$
\operatorname{co}\left(\sum_{j \in F} T \mathrm{e}_{j}\right)=\operatorname{co}\left(T \mathrm{e}_{j_{0}}\right)
$$

It follows

$$
\sum_{j \in F}\left(T \mathrm{e}_{j}\right)(i) \in \operatorname{Im}\left(\sum_{j \in F} T \mathrm{e}_{j}\right) \subseteq \operatorname{co}\left(\sum_{j \in F} T \mathrm{e}_{j}\right)=\operatorname{co}\left(T \mathrm{e}_{j_{0}}\right) .
$$

Hence $a=\inf _{i \in \mathbb{N}}\left(T \mathrm{e}_{j_{0}}\right)(i) \leq \sum_{j \in F}\left(T \mathrm{e}_{j}\right)(i) \leq 0$. Since the latter inequality holds for all finite subsets $F \subseteq I^{-}$, we have $a \leq \sum_{j \in I^{-}}\left(T \mathrm{e}_{j}\right)(i) \leq 0$.
The other inequality follows by a similar argument.
Corollary 2.6. Let $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. Then any row sums of T belong to $[a, b]$.
Proof. By adding two inequalities in Theorem 2.5, we get the assertion.
Lemma 2.7. Let $j \in \mathbb{N}$ and $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. Then $0 \in \operatorname{Im}\left(T_{j}\right)$.
Proof. Let $j_{1}, j_{2} \in \mathbb{N}$ be distinct. If $a=b=0$, then $T \mathrm{e}_{j_{1}}=0$ and the assertion follows. Otherwise, $a<0$ or $b>0$. For $j \in \mathbb{N}$, as $a=\inf _{i \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i)$ and $b=\sup _{i \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i)$, we have $\left\|T \mathrm{e}_{j}\right\|_{\infty}=\max \{b,-a\}>0$.

Now if $\left\|T \mathrm{e}_{j_{2}}\right\|_{\infty}=b>0$, then there is $i_{0} \in \mathbb{N}$ such that $\left(T \mathrm{e}_{j_{2}}\right)\left(i_{0}\right)=b$. Applying Theorem 2.2, we conclude that

$$
b=\left|\left(T \mathrm{e}_{j_{2}}\right)\left(i_{0}\right)\right| \leq \sum_{j=1}^{\infty}\left|\left(T \mathrm{e}_{j}\right)\left(i_{0}\right)\right| \leq\left\|T \mathrm{e}_{j_{2}}\right\|_{\infty}=b
$$

The latter inequalities lead to $\left|\left(T \mathrm{e}_{j}\right)\left(i_{0}\right)\right|=0$ for any $j \neq j_{2}$. Therefore $\left(T \mathrm{e}_{j_{1}}\right)\left(i_{0}\right)=0$, it implies that $0 \in \operatorname{Im}\left(T \mathrm{e}_{j_{1}}\right)$. For $\left\|T \mathrm{e}_{j_{2}}\right\|_{\infty}=-a>0$, the assertion follows by a similar argument.

Lemma 2.8. Let $j \in \mathbb{N}$ and $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. Then $a, b \in \operatorname{Im}\left(T \mathrm{e}_{j}\right)$ and $\operatorname{co}\left(T \mathrm{e}_{j}\right)=[a, b]$.
Proof. According to Remark 1.5 we have $\operatorname{co}\left(\mathrm{Te}_{j}\right)=I$, where I is a bounded interval and $a=\inf I$ and $b=\sup I$. Since $T e_{j} \in \mathfrak{c}_{0}$, it follows that zero can be at most a limit point of $\operatorname{Im}\left(T \mathrm{e}_{j}\right)$ and $a \leq 0 \leq b$. If $a<0$, then a can not be a limit point of $\operatorname{Im}\left(T e_{j}\right)$. As $a=\inf _{i \in \mathbb{N}}\left(T e_{j}\right)(i)$, we have $a \in \operatorname{Im}\left(T e_{j}\right)$. If $a=0$, Lemma 2.7 implies that $a=0 \in \operatorname{Im}\left(T \mathrm{e}_{j}\right)$. By a similar argument, $b \in \operatorname{Im}\left(T \mathrm{e}_{j}\right)$. Therefore $\operatorname{co}\left(T \mathrm{e}_{j}\right)=[a, b]$.

Corollary 2.9. For $j \in \mathbb{N}$ and $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$, we have $\min _{i \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i)=a$ and $\max _{i \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i)=b$.
Theorem 2.10. Let $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ and $a<0<b$. Then for distinct $j_{1}, j_{2} \in \mathbb{N}$, we have

$$
\max _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathbf{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{2}}\right)(i)\right\}=1 .
$$

Proof. By Lemma 2.8, it follows that

$$
\begin{equation*}
\max _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(\mathrm{Te}_{j_{1}}\right)(i)\right\}=\max _{i \in \mathbb{N}}\left\{\frac{1}{b}\left(T \mathrm{e}_{j_{2}}\right)(i)\right\}=1 \tag{6}
\end{equation*}
$$

Since $T \mathrm{e}_{j_{1}} \in \mathfrak{c}_{0}$, it follows that for arbitrary $0<\varepsilon<1$, there is $m \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)\right|<\varepsilon, \quad \text { for all } i>m . \tag{7}
\end{equation*}
$$

Theorem 2.2 implies that $\sum_{j \in \mathbb{N}}\left|\left(T e_{j}\right)(i)\right|<\infty$, for all $i \in \mathbb{N}$. So there exists $n \in \mathbb{N}$ such that

$$
\begin{equation*}
\left|\frac{1}{b}\left(T e_{j}\right)(i)\right|<\varepsilon, \quad \text { for all } i \in\{1, \ldots, m\} \text { and } j>n \tag{8}
\end{equation*}
$$

Assume that $j_{0}>n$ and $j_{0} \neq j_{1}$, then (7) and (8) imply that for all $i \in \mathbb{N}$,

$$
\begin{array}{ll}
\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{0}}\right)(i) \leq 1+\varepsilon, & \text { for } i \in\{1, \ldots, m\}, \\
\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{0}}\right)(i) \leq \varepsilon+1, & \text { for } i>m \tag{10}
\end{array}
$$

As $\frac{1}{a} T \mathrm{e}_{j_{1}}+\frac{1}{b} T \mathrm{e}_{j_{2}} \sim_{c} \frac{1}{a} T \mathrm{e}_{j_{1}}+\frac{1}{b} T \mathrm{e}_{j_{0}}$, for all $\varepsilon>0$, the relations (9) and (10) imply that

$$
\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathbf{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathbf{e}_{j_{2}}\right)(i)\right\}=\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathbf{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathbf{e}_{j_{0}}\right)(i)\right\} \leq \varepsilon+1 .
$$

Since $\varepsilon>0$ is arbitrary, we have

$$
\begin{equation*}
\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{2}}\right)(i)\right\}=\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{0}}\right)(i)\right\} \leq 1 . \tag{11}
\end{equation*}
$$

On the other hand, (6) yields that there is $i_{0} \in \mathbb{N}$ such that $\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)\left(i_{0}\right)=1$. In (7), as $\varepsilon<1$, we have $i_{0} \in\{1, \ldots, m\}$ and so (8) concluds $\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)\left(i_{0}\right)+\frac{1}{b}\left(T \mathrm{e}_{j_{0}}\right)\left(i_{0}\right) \geq 1-\varepsilon$, thus for all $\varepsilon>0$, we have

$$
\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathbf{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathbf{e}_{j_{2}}\right)(i)\right\}=\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathbf{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{0}}\right)(i)\right\} \geq 1-\varepsilon
$$

since $\varepsilon>0$ is arbitrary, so

$$
\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{2}}\right)(i)\right\}=\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{0}}\right)(i)\right\} \geq 1,
$$

together (11) follow that $\sup _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{2}}\right)(i)\right\}=1$. As $T \mathrm{e}_{j} \in \mathfrak{c}_{0}$, so 1 is not a limit point of $\operatorname{Im}\left\{\frac{1}{a} T \mathrm{e}_{j_{1}}+\frac{1}{b} T \mathrm{e}_{j_{2}}\right\}$, so $1 \in \operatorname{Im}\left\{\frac{1}{a} T \mathrm{e}_{j_{1}}+\frac{1}{b} T \mathrm{e}_{j_{2}}\right\}$, that is

$$
\max _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathbf{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathbf{e}_{j_{2}}\right)(i)\right\}=1 .
$$

Theorem 2.11. Let $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ and $a<0<b$. Then for $i \in \mathbb{N}$, we have

$$
\frac{1}{a} \sum_{j \in I^{-}}\left(T \mathrm{e}_{j}\right)(i)+\frac{1}{b} \sum_{j \in I^{+}}\left(T \mathrm{e}_{j}\right)(i) \leq 1
$$

Proof. By Theorem 2.5, for $I^{+}=\emptyset$, and $i \in \mathbb{N}$, we have $a \leq \sum_{j \in I^{-}}\left(T e_{j}\right)(i) \leq 0$. Multiplying the latter inequalities by $\frac{1}{a}$, we get the assertion. For $I^{-}=\emptyset$, the assertion follows by a similar argument.

We now suppose that I^{+}and I^{-}are both nonempty. Let $E \subseteq I^{+}$and $F \subseteq I^{-}$, where E and F are nonempty finite sets. For distinct $j_{1}, j_{2} \in \mathbb{N}$, as $\frac{1}{a} \sum_{j \in F} \mathrm{e}_{j}+\frac{1}{b} \sum_{j \in E} \mathrm{e}_{j} \sim_{c} \frac{1}{a} \mathrm{e}_{j_{1}}+\frac{1}{b} \mathrm{e}_{j_{2}}$, it follows that $\frac{1}{a} \sum_{j \in F} T \mathrm{e}_{j}+\frac{1}{b} \sum_{j \in E} T \mathrm{e}_{j} \sim_{c}$ $\frac{1}{a} T \mathbf{e}_{j_{1}}+\frac{1}{b} T \mathrm{e}_{j_{2}}$. Theorem 2.10 together the latter formula follow that for $i \in \mathbb{N}$, we have

$$
\frac{1}{a} \sum_{j \in F}\left(T \mathrm{e}_{j}\right)(i)+\frac{1}{b} \sum_{j \in E}\left(T \mathrm{e}_{j}\right)(i) \leq \max _{i \in \mathbb{N}}\left\{\frac{1}{a}\left(T \mathrm{e}_{j_{1}}\right)(i)+\frac{1}{b}\left(T \mathrm{e}_{j_{2}}\right)(i)\right\}=1
$$

Since the above inequality holds for any finite subsets $F \subseteq I^{-}$and $E \subseteq I^{+}$, we get

$$
\frac{1}{a} \sum_{j \in I^{-}}\left(T \mathrm{e}_{j}\right)(i)+\frac{1}{b} \sum_{j \in I^{+}}\left(T \mathrm{e}_{j}\right)(i) \leq 1
$$

Corollary 2.12. Let $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ and T consider in the matrix form. Then the following sentences hold.
(i) If $a<0$, then in any row of T which appears a, the other entries equal zero.
(ii) If $b>0$, then in any row of T which appears b, the other entries equal zero.

Proof. For part (i), let $a<0$ and it appears in the row $i \in \mathbb{N}$.
If $b=0$, then $I^{+}=\emptyset$ and $I^{-} \neq \emptyset$. On the other hand, Theorem 2.5 implies that $a \leq \sum_{j \in I^{-}}\left(T \mathrm{e}_{j}\right)(i)$, where $\left(T \mathrm{e}_{j}\right)(i) \leq 0$, for all $j \in I^{-}$and one of them is equal to a, then we have $\sum_{j \in I^{-}}\left(T \mathrm{e}_{j}\right)(i)=a$. Let $j_{0} \in I^{-}$be such that $\left(T \mathrm{e}_{j_{0}}\right)(i)=a$, it follows that $a=\sum_{\substack{j \in I^{-} \\ j \neq j_{0}}}\left(T \mathrm{e}_{j}\right)(i)+a$. This concludes that $\left(T \mathrm{e}_{j}\right)(i)=0$, for all $j \in \mathbb{N}$ with $j \neq j_{0}$.
If $b>0$, Theorem 2.11 follows that

$$
\sum_{j \in I^{-}} \frac{\left(T \mathrm{e}_{j}\right)(i)}{a}+\sum_{j \in I^{+}} \frac{\left(T \mathrm{e}_{j}\right)(i)}{b} \leq 1
$$

As all the elements of both series are nonnegative and there is $j_{0} \in I^{-}$such that $\left(T \mathrm{e}_{j_{0}}\right)(i)=a$, it gives $\left(T e_{j}\right)(i)=0$, for all $j \in \mathbb{N}$ with $j \neq j_{0}$. This completes the proof of part (i).
By applying similar arguments, the assertion (ii) follows.

The following theorem and Theorem 1.8 characterize the set $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.
Theorem 2.13. We have $\mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)=\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.
Proof. Obviously, $\mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right) \subseteq \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. Now suppose that $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$. Corollary 2.9 implies that $\min _{i \in \mathbb{N}}\left(T e_{j}\right)(i)=a$ and $\max _{i \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i)=b$, for any $j \in \mathbb{N}$. If $a<0<b$, according to Theorems 1.8 and 2.11 , we have $T \in \mathcal{P}_{c m}\left(c_{0}\right)$, and if $a<0=b$, it follows $I^{+}=\emptyset$, and if $a=0<b$, it follows $I^{-}=\emptyset$, now we can use Theorems 1.8 and 2.5 to get $T \in \mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$. That is $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right) \subseteq \mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$, which follows that $\mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)=\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.

3. Characterization of strong preservers of convex equivalent on \mathfrak{c}_{0}

As we mentioned, the set of all bounded linear operators $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ which strongly preserve convex majorization is denoted by $\mathcal{P}_{s c m}\left(\mathfrak{c}_{0}\right)$, that is $f<_{c} g$ if and only if $T f{<_{c}}_{c} T g$, for $f, g \in \mathfrak{c}_{0}$, and the set of all bounded linear operators $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ which strongly preserve convex equivalent is denoted by $\mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$, that is

$$
f \sim_{c} g \quad \text { if and only if } \quad T f \sim_{c} T g
$$

The aim of this section is to study some important properties of $\mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$ and characterize the elements of $\mathcal{P}_{\text {scm }}\left(\mathfrak{c}_{0}\right)$ and $\mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$.

Obviously the following sentences are satisfied.

- $\mathcal{P}_{s c m}\left(\mathfrak{c}_{0}\right) \subseteq \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right) \subseteq \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.
- $\mathcal{P}_{s c m}\left(\mathfrak{c}_{0}\right)$ and $\mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$ are both closed under the combination and nonzero scalar multiplication.
- If $T \in \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$, then $\operatorname{Ker}(T)=\{0\}$.

Example 3.1. In Example 1.4, we get the right shift operator on \mathfrak{c}_{0} defined by

$$
T f=\left(0, f_{1}, f_{2}, \ldots\right), \quad \text { for all } f \in \mathfrak{c}_{0}
$$

preserves convex equivalent. Now let $f=\left(1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$ and $g=\left(0,1, \frac{1}{2}, \frac{1}{3}, \ldots\right)$. Then we have $\operatorname{co}(T f)=\operatorname{co}(T g)=[0,1]$ and so $T f \sim_{c} T g$. But $f \varkappa_{c} g$. Therefore $T \notin \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$. That is $\mathcal{P}_{s c e}\left(c_{0}\right)$ is a proper subset of $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$.

Lemma 3.2. If $T \in \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$, then $a \neq-b$.
Proof. On the contrary suppose that, $a=-b$. Then we have

$$
\operatorname{co}\left(T \mathrm{e}_{j}\right)=\operatorname{co}\left(T\left(-\mathrm{e}_{j}\right)\right)=[a, b]
$$

which implies that $T \mathrm{e}_{j} \sim_{c} T\left(-\mathrm{e}_{j}\right)$, but we have $\mathrm{e}_{j} \propto_{c}-\mathrm{e}_{j}$. This is a contradiction.
For $T \in \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$, we need some lemmas to prove that $a=0<b$ or $a<0=b$.
Lemma 3.3. Let $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right), a<0<b$ and $\alpha \leq \min \left\{\frac{a}{b}, \frac{b}{a}\right\}$. Let $j_{1}, j_{2} \in \mathbb{N}$ be distinct and $g=\alpha \mathbf{e}_{j_{1}}+\mathbf{e}_{j_{2}}$, then we have $\alpha b \leq \inf T g \leq \sup T g \leq \alpha a$.

Proof. Suppose that $0<\varepsilon \leq \min \{-a, b\}$. Since $T \mathrm{e}_{j_{1}} \in \mathfrak{c}_{0}$, there is an $n \in \mathbb{N}$, such that for all $i>n$, we have $\left|\left(T \mathrm{e}_{j_{1}}\right)(i)\right|<\frac{\varepsilon}{-\alpha} \leq \varepsilon$. Theorem 2.2 implies that all rows of the matrix form of T belong to ℓ^{1}. Hence there is $j_{0} \in \mathbb{N},\left(j_{0} \neq j_{1}\right)$ such that $\left|\left(T \mathrm{e}_{j_{0}}\right)(i)\right|<\varepsilon$, for all $i \in\{1, \ldots, n\}$. We now investigate the following two cases for $i \in \mathbb{N}$:
Case 1: Let $i \in\{1, \ldots, n\}$. As $a \leq\left(T \mathrm{e}_{j_{1}}\right)(i) \leq b$ and $\left|\left(T \mathrm{e}_{j_{0}}\right)(i)\right|<\varepsilon$, we have

$$
\begin{equation*}
\alpha b-\varepsilon \leq \alpha\left(T \mathrm{e}_{j_{1}}\right)(i)+\left(T \mathrm{e}_{j_{0}}\right)(i) \leq \alpha a+\varepsilon \tag{12}
\end{equation*}
$$

Case 2: Let $i \in \mathbb{N} \backslash\{1, \ldots, n\}$. Since $\left|\left(T \mathrm{e}_{j_{1}}\right)(i)\right|<\frac{\varepsilon}{-\alpha}$ and $a \leq\left(T \mathrm{e}_{j_{0}}\right)(i) \leq b$, it follows

$$
\begin{equation*}
a-\varepsilon \leq \alpha\left(T \mathrm{e}_{j_{1}}\right)(i)+\left(T \mathrm{e}_{j_{0}}\right)(i) \leq b+\varepsilon \tag{13}
\end{equation*}
$$

Therefore (12) and (13) deduce that

$$
\alpha b-\varepsilon=\min \{\alpha b-\varepsilon, a-\varepsilon\} \leq \alpha\left(T \mathbf{e}_{j_{1}}\right)(i)+\left(T \mathbf{e}_{j_{0}}\right)(i) \leq \max \{\alpha a+\varepsilon, b+\varepsilon\}=\alpha a+\varepsilon
$$

Since ε is arbitrary, it follows that

$$
\operatorname{co}(T g)=\operatorname{co}\left(\alpha T \mathrm{e}_{j_{1}}+T \mathrm{e}_{j_{2}}\right)=\operatorname{co}\left(\alpha T \mathrm{e}_{j_{1}}+T \mathrm{e}_{j_{0}}\right) \subseteq[\alpha b, \alpha a] .
$$

This gives the assertion.
Lemma 3.4. If $T \in \mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ and $\min T \mathrm{e}_{j}=a<0<b=\max T \mathrm{e}_{j}$, then $T \notin \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$.
Proof. Let $\alpha=\min \left\{\frac{a}{b}, \frac{b}{a}\right\}$ and for distinct natural numbers j_{1}, j_{2}, define $f=\alpha \mathbf{e}_{j_{1}}$ and $g=\alpha \mathbf{e}_{j_{1}}+\mathbf{e}_{j_{2}}$. Thus $T f=$ $\alpha T \mathrm{e}_{j_{1}}$, which implies $\operatorname{co}(T f)=\operatorname{co}\left(\alpha T \mathrm{e}_{j_{1}}\right)=\alpha[a, b]=[\alpha b, \alpha a]$. Corollary 2.9 implies that there are $i_{1}, i_{1}^{*} \in \mathbb{N}$ such that $\left(T \mathrm{e}_{j_{1}}\right)\left(i_{1}\right)=a$ and $\left(T \mathrm{e}_{j_{1}}\right)\left(i_{1}^{*}\right)=b$. Also, Corollary 2.12 concludes that $\left(T \mathrm{e}_{j_{2}}\right)\left(i_{1}\right)=\left(T \mathrm{e}_{j_{2}}\right)\left(i_{1}^{*}\right)=0$ and so

$$
\begin{align*}
& \alpha a=\alpha\left(T \mathrm{e}_{j_{1}}\right)\left(i_{1}\right)+\left(T \mathrm{e}_{j_{2}}\right)\left(i_{1}\right) \in \operatorname{co}(T g), \tag{14}\\
& \alpha b=\alpha\left(T \mathrm{e}_{j_{1}}\right)\left(i_{1}^{*}\right)+\left(T \mathrm{e}_{j_{2}}\right)\left(i_{1}^{*}\right) \in \operatorname{co}(T g) . \tag{15}
\end{align*}
$$

Lemma 3.3 together (14) and (15) imply that $\operatorname{co}(T g)=[\alpha b, \alpha a]=\operatorname{co}(T f)$. Which follows that $T f \sim_{c} T g$, although $f x_{c} g$. This means that $T \notin \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$.
In the following, we obtain some results of Lemma 3.4.
Theorem 3.5. If $T \in \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$, then $a=0<b$ or $a<0=b$.
Proof. Obviously $a \leq 0 \leq b$. Lemma 3.4 implies that $a=0 \leq b$ or $a \leq 0=b$. It is impossible $a=b=0$, because it follows that $T \equiv 0$ and so T is not in $\mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$. This completes the proof.

Theorem 3.6. If $T \in \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$, then the matrix representation of T does not contain zero row.
Proof. Suppose, contrary to our claim, that all the entries of the i_{0} th row of T are equal to zero. Let $f=\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right) \in \mathfrak{c}_{0}$. So for any $j \in \mathbb{N}$, Theorem 3.5 implies that

$$
\operatorname{co}\left(T \mathrm{e}_{j}\right)=[a, 0]=\operatorname{co}(T f), \quad \text { or } \quad \operatorname{co}\left(T \mathrm{e}_{j}\right)=[0, b]=\operatorname{co}(T f),
$$

which follows $T \mathrm{e}_{j} \sim_{c} T f$, but $f \chi_{c} \mathbf{e}_{j}$. That is $T \notin \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$, which is a contradiction.
Example 3.7. Let $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ be a bounded linear operator defined by

$$
T f=\left(2 f_{1}, 2 f_{1}, 2 f_{2}, 2 f_{2}, 2 f_{3}, 2 f_{3}, \ldots\right), \quad \text { for all } f \in \mathfrak{c}_{0}
$$

Then we have $\operatorname{co}(T f)=2 \operatorname{co}(f)$ and obviously $T \in \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$.
In this part, we recall the generalization of convex combination.
Definition 3.8. Let X be a normed linear space and $A \subseteq X$. The countable convex hull of A is defined as follows

$$
\operatorname{cco}(A)=\left\{\sum_{i=1}^{\infty} \alpha_{i} x_{i}: x_{i} \in A, \alpha_{i} \geq 0, \sum_{i=1}^{\infty} \alpha_{i}=1, \sum_{i=1}^{\infty} \alpha_{i} x_{i} \text { converges }\right\} .
$$

It is easy to check that for $A \subseteq \mathbb{R}$, we have $\operatorname{coo}(A)=\operatorname{co}(A)$.

Lemma 3.9. [3, Lemma 2.6] Let $x \in \mathfrak{c}_{0}, \alpha_{i} \geq 0$ and $0<\sum_{i=1}^{\infty} \alpha_{i} \leq 1$. Then $\sum_{i=1}^{\infty} \alpha_{i} x(i) \in \operatorname{co}(x)$.
Let \mathcal{E} denote the set of all bounded linear operators $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ satisfy $\operatorname{co}(T f)=\operatorname{co}(f)$, for all $f \in \mathfrak{c}_{0}$. In [3], Bayati et al. proved that $\mathcal{E} \subseteq \mathcal{P}_{c m}\left(\mathfrak{c}_{0}\right)$ and any permutation lies in \mathcal{E}, also proved the following theorems.

Theorem 3.10. [3, Theorem 2.20] If $T \in \mathcal{E}$, then
(i) for all $j \in \mathbb{N}, \min _{i \in \mathbb{N}}\left\{\left(T \mathrm{e}_{j}\right)(i)\right\}=0$, and $\max _{i \in \mathbb{N}}\left\{\left(T \mathrm{e}_{j}\right)(i)\right\}=1$.
(ii) if $\left(\left(T \mathrm{e}_{j}\right)(i)\right)_{j \in \mathbb{N}}$ is the ith row of the matrix form of T, then $\sum_{j \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)(i) \leq 1$.

Theorem 3.11. [3, Theorem 2.22 and Remark 2.23] If $T \in \mathcal{E}$, then the matrix form of T has no zero row and any row sum of T belongs to $[0,1]$.

Theorems 3.10 and 3.11 imply the following theorem.
Theorem 3.12. Let $T: \mathfrak{c}_{0} \rightarrow \mathfrak{c}_{0}$ be a bounded linear operator. Then $T \in \mathcal{E}$ if and only if
(i) for all $j \in \mathbb{N}$, we have $\min _{i \in \mathbb{N}}\left\{\left(T \mathrm{e}_{j}\right)(i)\right\}=0$, and $\max _{i \in \mathbb{N}}\left\{\left(T \mathrm{e}_{j}\right)(i)\right\}=1$.
(ii) any row sum of T belongs to $(0,1]$, i.e., $0<\sum_{j \in \mathbb{N}}\left(T e_{j}\right)(i) \leq 1$, for any $i \in \mathbb{N}$.

Proof. Let $T \in \mathcal{E}$. Theorems 3.10 and 3.11 imply (i), (ii). Now let (i), (ii) hold and $f \in \mathfrak{c}_{0}$. By (i), for $j_{0} \in \mathbb{N}$ there is $i_{0} \in \mathbb{N}$, such that $\left(T \mathrm{e}_{j_{0}}\right)\left(i_{0}\right)=1$. Part (ii) implies that $\sum_{j \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)\left(i_{0}\right) \leq 1$ and $0 \leq\left(T \mathrm{e}_{j}\right)\left(i_{0}\right) \leq 1,\left(T \mathrm{e}_{j_{0}}\right)\left(i_{0}\right)=1$, so $\left(T \mathrm{e}_{j}\right)\left(i_{0}\right)=0$, for all $j \in \mathbb{N} \backslash\left\{j_{0}\right\}$. Therefore $(T f)\left(i_{0}\right)=\sum_{j \in \mathbb{N}}\left(T \mathrm{e}_{j}\right)\left(i_{0}\right) f(j)=f\left(j_{0}\right)$ and so $\operatorname{Im}(f) \subseteq \operatorname{Im}(T f)$, and so $\operatorname{co}(f) \subseteq \operatorname{co}(T f)$.

Now for any $i \in \mathbb{N}$, we have $0<\sum_{j \in \mathbb{N}}\left(T e_{j}\right)(i) \leq 1$. According to Lemma 3.9 we have $(T f)(i)=$ $\sum_{j=1}^{\infty}\left(T \mathrm{e}_{j}\right)(i) f(j) \in \operatorname{co}(f)$ and so $\operatorname{co}(T f) \subseteq \operatorname{co}(f)$. Therefore $\operatorname{co}(T f)=\operatorname{co}(f)$, i.e., $T \in \mathcal{E}$.
In the following theorem, we characterize the elements of $\mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$.
Theorem 3.13. $\mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)=\{\lambda T: \lambda \in \mathbb{R} \backslash\{0\}, T \in \mathcal{E}\}$.
Proof. It is easy to show that $\{\lambda T: \lambda \in \mathbb{R} \backslash\{0\}, T \in \mathcal{E}\} \subseteq \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$. Now, let $T \in \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$. The fact $\mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right) \subseteq$ $\mathcal{P}_{c e}\left(\mathfrak{c}_{0}\right)$ and Theorems $1.8,2.13,3.5,3.6$ and 3.12 imply that $\frac{1}{b} T \in \mathcal{E}$, whenever $a=0<b$ and $\frac{1}{a} T \in \mathcal{E}$, whenever $a<0=b$.

As a consequence of Theorem 3.13, we obtain the next theorem.
Theorem 3.14. $\mathcal{P}_{\text {scm }}\left(\mathfrak{c}_{0}\right)=\mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$.
Proof. It is easy to show that $\mathcal{P}_{s c m}\left(\mathfrak{c}_{0}\right) \subseteq \mathcal{P}_{\text {sce }}\left(\mathfrak{c}_{0}\right)$. Now suppose that $T \in \mathcal{P}_{s c e}\left(\mathfrak{c}_{0}\right)$. Theorem 3.13 implies that $T=\lambda T_{1}$, for some $\lambda \neq 0$ and $T_{1} \in \mathcal{E}$. Hence $\operatorname{co}(T f)=\operatorname{co}\left(\lambda T_{1}(f)\right)=\lambda \operatorname{co}\left(T_{1}(f)\right)=\lambda \operatorname{co}(f)$. So $f<_{c} g$ if and only if $\operatorname{co}(T f)=\lambda \operatorname{co}(f) \subseteq \lambda \operatorname{co}(g)=\operatorname{co}(T g)$, that is $T \in \mathcal{P}_{s c m}\left(\mathfrak{c}_{0}\right)$.

The above two theorem characterize the elements of $\mathcal{P}_{s c m}\left(\mathfrak{c}_{0}\right)$.

Acknowledgment

This work has been financially supported by the research deputy of Shahrekord university. The grant number was 95GRN1M1979.

References

[1] T. Ando, Majorization and inequalities in matrix theory, Linear Algebra and its Applications 199 (1994) 17-67.
[2] F. Bahrami, A. Bayati, S. M. Manjegani, Linear preservers of majorization on $\ell^{p}(I)$, Linear Algebra and its Applications 436 (2012) 3177-3195.
[3] A. Bayati Eshkaftaki, N. Eftekhari, Characterization of linear preservers of generalized majorization on c_{0}, Filomat 31 (2017) no.15, 4979-4988.
[4] A. Bayati Eshkaftaki, N. Eftekhari, Characterization of two-sided order preserving of convex majorization on $\ell^{p}(I)$, Filomat 31 (2017) no.18, 5703-5710.
[5] L. B. Beasley, S. -G. Lee, Y. -H. Lee, A characterization of strong preservers of matrix majorization, Linear Algebra and its Applications 367 (2003) 341-346.
[6] G. Dahl, Matrix majorization, Linear Algebra and its Applications 288 (1999) 53-73.
[7] N. Eftekhari, A. Bayati Eshkaftaki, Isotonic linear operators on the space of all convergent real sequences, Linear Algebra and its Applications 506 (2016) 535-550.
[8] A. W. Marshall, I. Olkin, B.C. Arnold, Inequalities; Theory of Majorization and its Application, Academic Press, New York, 1979.
[9] S. Pierce, A survey of linear preserver problems, Linear and Multilinear Algebra 33 (1992) (1-2).
[10] A. E. Taylor, D. Lay, Introduction to functional analysis, Old school classic, (2nd edition), 1986.

[^0]: 2010 Mathematics Subject Classification. Primary 15A86; Secondary 47B60, 47L07
 Keywords. Convex majorization, Strong preserver, Convex equivalent
 Received: 28 February 2018; Revised: 09 January 2019; Accepted: 12 March 2019
 Communicated by Dragan S. Djordjević
 Research supported by Shahrekord University
 Email addresses: eftekhari-n@sku.ac.ir, eftekharinoha@yahoo.com (Noha Eftekhari), bayati.ali@sku.ac.ir, a.bayati@math.iut.ac.ir (Ali Bayati Eshkaftaki)

