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A predictor-corrector infeasible-interior-point method for the
Cartesian P∗(κ)-LCP over symmetric cones with
O

(√
cond(G)(1 + κ)2r log ε−1

)
iteration complexity
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ABSTRACT
In this paper, we present a predictor-corrector infeasible-interior-point
method for symmetric cone linear complementarity problem (SCLCP) with
the Cartesian P∗(κ)-property (P∗(κ)-SCLCP). Thismethod is based on awide
neighbourhood, which is an even wider neighbourhood than the negative
infinity neighbourhood. We show that the iteration-complexity bound of
the proposed algorithm for a commutative class of search directions is

O
(√

cond(G)(1 + κ)2r log ε−1
)
, where cond(G) is the condition number

of matrix G, κ is the handicap of the problem, r is the rank of the
associated Euclidean Jordan algebra and ε > 0 is a given tolerance. To
our knowledge, this is the best complexity result obtained so far for the
wide neighbourhood infeasible-interior-point methods for the Cartesian
P∗(κ)-SCLCPs.
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1. Introduction

Interior-point methods (IPMs) that initiated by Karmarkar [1] play an important role in modern
mathematical programming. They have been proposed for linear programming (LP), and then many
of these methods are extended to symmetric cone programming (SCP).[2–8] SCP includes solving
problems such as LP, semidefinite programming (SDP) and second-order cone programming. The
foundation for solving these problems using IPMs was laid by Nesterov and Nemirovski [9]. The first
extension of primal-dual IPMs for SCP was achieved by Nesterov and Todd [10,11].

Two popular neighbourhoods used in IPMs are so-called small neighbourhood and negative infin-
itywideneighbourhood.Ai [12] andAi andZhang [13] proposed anewclass ofwider neighbourhoods
for LP and linear complementarity problems (LCPs), respectively, which is known as N (τ , β) (see
Section 3). Li and Terlaky [14] extended the Ai and Zhang’s technique to SDP. In 2013, Liu et al.
[15] extended the wide neighbourhood N (τ , β) to SCP. Recently, Yang et al. [16] proposed a new
approach in the complexity analysis of an infeasible-IPM for SCP based on the wide neighbourhood
N (τ , β) and improved the theoretical complexity bound in Liu et al. [15]. Motivated by these results,
we present a predictor-corrector infeasible-interior-point algorithm for P∗(κ)-SCLCP. The current
paper aims at modifying Yang et al.’s algorithm in [16] to gain a new class of second-order corrector
interior point algorithm for P∗(κ)-SCLCP.

The class of P∗(κ)-matrices was first introduced by Kojima et al. [17]. Later, the Cartesian P∗(κ)-
SCLCP introduced by Luo and Xiu [18]. The Cartesian P∗(κ) class involves the Cartesian P class
and turns out to be a special case in the Cartesian P0 class. Several efficient algorithms have been
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proposed for the Cartesian P∗(κ)-SCLCP and the Cartesian P-matrix SCLCP in [19–24]. Based on
the Nesterov–Todd (NT) search direction, in [20,23,24] the authors proposed a class of polynomial
interior point algorithms, which generates a sequence of iterates in the small neighbourhood of the
central path. The first extension of infeasible-IPM based on the wide neighbourhoodN (τ , β) in [15]
to the Cartesian P∗(κ)-SCLCP was achieved by Sayadi Shahraki et al. [22]. Furthermore, by using the
NT search direction, the iteration complexity for this class of optimization problems is obtained as
O
(
(1 + κ)3r2 log ε−1).[19,21] In [21], the iteration complexities for xs and sx search directions are

obtained as O
(
(1 + κ)3r2.5 log ε−1).

In this paper, we improve the iteration complexity for the NT search direction to O
(
(1 + κ)2r

log ε−1
)
and the iteration complexities for xs and sx search directions to O

(
(1 + κ)2r3/2 log ε−1) .

This paper is organized as follows: In Section 2, we give a brief introduction to Euclidean Jordan
algebra and IPM for the Cartesian P∗(κ)-SCLCP. In Section 3, we present an interior-point algorithm
for the Cartesian P∗(κ)-SCLCP. In Section 4, we analyse the algorithm and obtain the currently best-
known iteration bound for infeasible-IPMs for Cartesian P∗(κ)-SCLCP. Finally, some conclusions
and remarks follow in section 5.

2. Preliminaries

2.1. Euclidean Jordan algebras and symmetric cones

In this section, we recall some concepts of Euclidean Jordan algebra and symmetric cones which
are needed in this paper. For a comprehensive treatment of Euclidean Jordan algebras, the reader is
referred to the monograph by Farut and Korány [25].
Definition 1: Let

(J , 〈·, ·〉) be an n-dimensional inner product space overR and ◦ : (x, y) �→ x◦y
be a bilinear map from J × J to J . Then, the triple

(J , 〈·, ·〉, ◦) is a Euclidean Jordan algebra if it
satisfies the following conditions:

(i) x ◦ y = y ◦ x for all x, y ∈ J ;
(ii) x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y) for all x, y ∈ J , where x2 := x ◦ x;
(iii) 〈x ◦ y, z〉 = 〈y, x ◦ z〉 for all x, y, z ∈ J , where the inner product 〈·, ·〉 is defined by

〈x, y〉 := Tr(x ◦ y) for any x, y ∈ J .

Since ‘◦’ is bilinear for every x ∈ J , there exists a linear operator L(x) such that for every y ∈ J ,
L(x)y := x ◦ y. The vectors x and y are said to be operator commute if L(x)L(y) = L(y)L(x). In other
words, x and y are operator commute if x ◦ (y ◦ z) = y ◦ (x ◦ z), for all z ∈ J . Additionally, we define

Q(x) := 2L(x)2 − L(x2),

where L(x)2 = L(x)L(x).Q(x) is called the quadratic representation of x. In the following, we present
some important properties of the quadratic representation.

Proposition 2.1 (Proposition III.2.2 in [25]): Let x, s ∈ int K. Then Q(x)s ∈ int K.

Lemma 2.2 (Lemma 28 in [4]): Let x, s ∈ int K and p be invertible. Then x ◦ s = μe if and only if
Q(p)x ◦ Q(p−1)s = μe.

Lemma 2.3 (Proposition 2.9 in [18]): Let x, s ∈ int K. If x and s are operator commute then
Q(x1/2)s = x ◦ s.

For a Euclidean Jordan algebra J , the corresponding cone of squares K := {x2 : x ∈ J } is a
symmetric cone. A Jordan algebra has an identity element, if there exists a unique element e, such
that x ◦ e = e ◦ x = x for all x ∈ J . For any x ∈ J , let k be the smallest integer such that the set
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{
e, x, . . . , xk

}
is linearly dependent. Then, k is the degree of x which is denoted by deg(x). The rank

of J is the largest deg(x) of any element x ∈ J .
An element c ∈ J is said to be an idempotent if c 
= 0 and c2 = c. An idempotent c is primitive if

it is nonzero and cannot be expressed by sum of two other nonzero idempotents. Two idempotents
ci and cl are said to be orthogonal if ci ◦ cl = 0. We say that {c1, c2, . . . , ck} is a Jordan frame if each
ci is a primitive idempotent, ci ◦ cl = 0 for all i 
= l, and

∑k
j=1 cj = e.

Theorem 2.4 (Theorem III.1.2 in [25]): Let J be a Euclidean Jordan algebra of rank r. For any
x ∈ J , there exists a Jordan frame {c1, c2, . . . , cr} and real numbers λ1, . . . , λr such that

x =
r∑

i=1

λici. (1)

Every λi is called an eigenvalue of x and (1) is the spectral decomposition of x. We denote
λmin

(
λmax

)
as the minimal (maximal) eigenvalue of x.

By using eigenvalues, we may extend the definition of any real-valued continuous function to
elements of a Euclidean Jordan algebra. Particularly, we have some examples as follow:

Square root: x1/2 := ∑r
i=1 λ

1/2
i ci if all λi ≥ 0;

Inverse: x−1 := ∑r
i=1 λ−1

i ci if all λi 
= 0;
Trace: Tr(x) = ∑r

i=1 λi;
Determinant: det(x) = ∏r

i=1 λi;
Frobenius norm: ‖x‖ := √〈x, x〉 = (∑r

i=1 λ2i
)1/2;

Metric projection: x+ = ∑r
i=1 λ+

i ci where λ+
i = max {λi, 0} for i = 1, 2, . . . , r. Moreover, x− =

x − x+.

In the following, we recall two lemmaswhich are useful in the complexity analysis of the algorithm.

Lemma 2.5 (Lemma 2.15 in [7]): Let x ◦ s ∈ int K, then det(x) 
= 0.

Lemma 2.6 (Lemma 5.12 in [26]): If x, y ∈ J , then∥∥∥(x + y
)+∥∥∥ ≤ ∥∥x+ + y+∥∥ ≤ ∥∥x+∥∥ + ∥∥y+∥∥ .

2.2. IPM for the Cartesian P∗(κ)-SCLCP

Let nν-dimensional space Jν be a Euclidean Jordan algebra and Kν is the corresponding symmetric
cone with rank rν , for any ν ∈ {1, 2, . . . , N}. Let J = J1 × J2 × · · · × JN is the Cartesian product
space with its cone of squares K = K1 × K2 × · · · × KN and the dimension and rank of J are
n = ∑N

ν=1 nν and r = ∑N
ν=1 rν , respectively. In this paper, we consider

SCLCP, given in the standard form

x ∈ K, s = A(x) + q ∈ K, 〈x, s〉 = 0, (2)

where A : J → J is a given linear transformation and q ∈ J .
We call SCLCP the Cartesian P∗(κ)-SCLCP if linear transformation A has the Cartesian P∗(κ)

property for some nonnegative constant κ ≥ 0, i.e. A(u) − v = 0 implies

(1 + 4κ)
∑
ν∈I+

〈u(ν), v(ν)〉 +
∑
ν∈I−

〈u(ν), v(ν)〉 ≥ 0, ∀ u, v ∈ J ,

where I+ = {ν : 〈u(ν), v(ν)〉 ≥ 0} and I− = {ν : 〈u(ν), v(ν)〉 < 0}.
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Throughout the paper, we assume that the Cartesian P∗(κ)-SCLCP satisfies the interior-point
condition (IPC), i.e. there exist (x, s) ∈ intK× intK such that s = A(x)+q. Under the IPC, finding
an optimal solution of (2) is equivalent to solving the following system:

A(x) − s = −q,
x ◦ s = 0,
x, s ∈ int K,

(3)

The basic idea of primal-dual IPMs is to replace the second equation in (3), the so-called comple-
mentary condition for the Cartesian P∗(κ)-SCLCP, by the parameterized equation x ◦ s = τμe, with
μ = 〈x, s〉/r which is called the duality gap and τ ∈]0, 1[ is called centring parameter. This yields
the following system

A(x) − s = −q,
x ◦ s = τμe,
x, s ∈ int K.

(4)

A natural way to define a search direction is to follow Newton’s approach and linearize the second
equation in (4). This leads to the following system:

A(�x) − �s = ρ,
s ◦ �x + x ◦ �s = τμe − x ◦ s, (5)

where the residual is denoted by ρ and is defined as

ρ = s − A(x) − q.

Due to the fact that x and smay be not operator commute in general, the system (5) does not always
have a unique solution. Therefore, we restrict the scaling u belong to the set of all elements so that
the scaled elements are operator commute, i.e.

C(x, s) = {
u : u ∈ int K such that Q(u)x and Q(u−1)s are operator commute

}
.

In particular, for

u =
[
Q(x)

1
2

(
Q(x

1
2 )s

)− 1
2
]−1/2

=
[
Q(s−

1
2 )

(
Q(s

1
2 )x

) 1
2
]−1/2

,

we obtain the NT search direction. Moreover, for the choice of u = s1/2 we get the xs search direction
and for u = x−1/2 we get the sx search direction.

Let Ã = Q(u−1)AQ(u−1), x̃ = Q(u)x, s̃ = Q(u−1)s, �x̃ = Q(u)�x, �̃s = Q(u−1)�s and
ρ̃ = Q(u−1)ρ. With these notations and Lemma 2.2, the Newton system becomes

Ã(�x̃) − �̃s = ρ̃,
s̃ ◦ �x̃ + x̃ ◦ �̃s = τμe − x̃ ◦ s̃. (6)

3. Algorithm

Most IPMs are primal-dual path following methods, the iterates are confined to stay within a
neighbourhood of the central path which is defined as

C = {(x, s) ∈ int K × int K : x ◦ s = μe, μ > 0} .
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The negative infinity neighbourhood which is a wide neighbourhood of the central path, is defined
as follows:

N −∞(1 − γ ) = {(x, s) ∈ int K × int K : λmin(w) ≥ γμ} ,
where γ ∈ ]0, 1[ and w = Q(x1/2)s.

In this paper, we will restrict the iterates into the following wide neighbourhood of the central
path for the Cartesian P∗(κ)-SCLCP, which introduced by Ai [12] for LP and Ai and Zhang [13] for
LCP and Liu et al. [15] for SCP:

N (τ , β) = {
(x, s) ∈ int K × int K : ∥∥(τμe − w)+

∥∥ ≤ βτμ
}
, (7)

where β , τ ∈ ]0, 1[.
Remark 1: From the definition of N (τ , β), it is obvious that

N−∞(1 − τ) ⊆ N (τ , β) ⊆ N−∞
(
1 − (

1 − β
)
τ
)
.

To obtain the predictor directions, we need to solve the following two systems:

Ã(�x̃1) − �̃s1 = ρ̃,
s̃ ◦ �x̃1 + x̃ ◦ �̃s1 = (τμe − x̃ ◦ s̃)− + √

r (τμe − x̃ ◦ s̃)+, (8)

and
Ã(�x̃2) − �̃s2 = 0,

s̃ ◦ �x̃2 + x̃ ◦ �̃s2 = (τμe − x̃ ◦ s̃)− + √
r (τμe − x̃ ◦ s̃)+.

(9)

Then, we compute the maximum size δ ∈ [0, 1] that ensures

Tr
(
�x̃3 ◦ �̃s3

) ≥ − 3
5 (1 + 2κ)(1 + βτ)rμ, (10)

where
�x̃3 = δ�x̃1 + (

1 − δ
)
�x̃2,

�̃s3 = δ�̃s1 + (
1 − δ

)
�̃s2.

(11)

The predictor directions are obtained in the same way as [16]. By using �x̃3 and �̃s3, we compute
the corrector directions �x̃c and �̃sc as follows:

Ã(�x̃c) − �̃sc = 0,
s̃ ◦ �x̃c + x̃ ◦ �̃sc = −�x̃3 ◦ �̃s3.

(12)

We get the new iterate (̃x(α), s̃(α)) as follows:

(̃x(α), s̃(α)) = (̃x + α�x̃3 + α2�x̃c , s̃ + α�̃s3 + α2�̃sc), (13)

where α ∈ [0, 1] is the step size, which ensures a sufficient reduction in the duality gap and
(̃x(α), s̃(α)) ∈ N (τ , β).

The duality gap corresponding to the new iterate is

μ̃(α) = 〈
Q(u)(x + α�x3 + α2�xc), Q(u−1)(s + α�s3 + α2�sc)

〉
/r

= 〈
x + α�x3 + α2�xc , s + α�s3 + α2�sc

〉
/r = μ(α).

(14)

It is easy to see that

ρ(α) = s(α) − A(x(α)) − q = (s + α�s3 + α2�sc) − A(x + α�x3 + α2�xc) − q
= (1 − δα)ρ. (15)
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Figure 1. The infeasible-interior-point predictor-corrector algorithm for the Cartesian P∗(κ)-SCLCP.

Moreover, we have

x̃(α) ◦ s̃(α) = T(α) + �x̃(α) ◦ �̃s(α), (16)

where,
T(α) = x̃ ◦ s̃ + α

[
(τμe − x̃ ◦ s̃)− + √

r (τμe − x̃ ◦ s̃)+
]
,

�x̃(α) ◦ �̃s(α) = α3(�x̃3 ◦ �̃sc + �̃s3 ◦ �x̃c) + α4(�x̃c ◦ �̃sc). (17)

A more formal description of the predictor-corrector algorithm for the Cartesian P∗(κ)-SCLCP
is given in Figure 1.

The following remark is readily verified for Algorithm 1.
Remark 2: Let

{
(xk, sk)

}
be generated by Algorithm 1. Then for k ≥ 0, we have

sk+1 − A(xk+1) − q = ϕk+1 (s0 − A(x0) − q
)
,

where ϕ0 = 1 and ϕk+1 = (1 − δkα̂k)ϕk = ∏k
i=0 (1 − δiα̂i) ∈ [0, 1].

From Remark 2, we have

ϕk =
∥∥sk − A(xk) − q

∥∥∥∥s0 − A(x0) − q
∥∥ .

Here ϕk represents the relative infeasibility at (xk, sk).
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4. Complexity analysis

In this section, wemainly characterize the polynomial complexity of Algorithm 1. In order to achieve
the complexity, we list some technical results.

Lemma 4.1 (Lemma 33 in [4]): Let v1, v2 ∈ J and G be a positive definite matrix which is symmetric
with respect to the scalar product 〈·, ·〉. Then

‖v1‖ ‖v2‖ ≤ √
cond(G)

∥∥G−1/2v1
∥∥ ∥∥G1/2v2

∥∥
≤ 1

2
√
cond(G)

(∥∥G−1/2v1
∥∥2 + ∥∥G1/2v2

∥∥2) ,
where cond(G) = λmax(G)/λmin(G) is the condition number of G.

As the results of Lemma 36 in [4], we present a bound on the condition number of G for some
specific search directions in the following lemma.
Lemma 4.2: For the NT search direction, cond(G) = 1. For the xs and sx directions, cond(G) ≤
r/(1 − β)τ .
Lemma 4.3: Suppose x, s, a ∈ J with (x, s) ∈ intK× intK, L(x)L(s) = L(s)L(x), G = L(s)−1L(x)
and A has Cartesian P∗(κ) property. Then the solution (v1, v2) of the following linear system

A(v1) − v2 = 0,
L(s)v1 + L(x)v2 = a,

satisfies the following inequality:

∥∥G−1/2v1
∥∥2 + ∥∥G1/2v2

∥∥2 ≤ (1 + 2κ) ‖ā‖2 ,

where ā = (
L(x)L(s)

)−1/2 a.

Proof: In the same way as the proof of Lemma 4.2 in [18], we obtain the result.

Before dealing with the analysis of the algorithm, we recall the following lemma from [21] that
will be needed.
Lemma 4.4: Let x, s, a, b ∈ J with (x, s) ∈ int K × int K, L(x)L(s) = L(s)L(x), G = L(s)−1L(x)
and A has Cartesian P∗(κ) property. Then the solution (v1, v2) of the following linear system

A(v1) − v2 = b,
L(s)v1 + L(x)v2 = a, (18)

satisfies the following inequality:

∥∥G−1/2v1
∥∥2 + ∥∥G1/2v2

∥∥2 ≤ (1 + 2κ)
(‖ā‖ + 3ζ

)2 ,
where ζ 2 = inf

{∥∥G−1/2v1
∥∥2 + ∥∥G1/2v2

∥∥2 : A(v1) − v2 = b
}
.

Proof: By multiplying (18) by (L(x)L(s))−1/2, we obtain

A(v1) − v2 = b,
G−1/2v1 + G1/2v2 = ā.
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Let (v̄1, v̄2) ∈ J × J satisfy equation A(v̄1) − v̄2 = b. Hence one has

A(v1 − v̄1) − (v2 − v̄2) = 0,
G−1/2(v1 − v̄1) + G1/2(v2 − v̄2) = ā − (

G−1/2v̄1 + G1/2v̄2
)
.

(19)

Using (19) and Lemma 4.3, we obtain√∥∥G−1/2(v1 − v̄1)
∥∥2 + ∥∥G1/2(v2 − v̄2)

∥∥2
≤ √

1 + 2κ
∥∥ā − (

G−1/2v̄1 + G1/2v̄2
)∥∥ ≤ √

1 + 2κ
(‖ā‖ + ∥∥G−1/2v̄1 + G1/2v̄2

∥∥)
≤ √

1 + 2κ
(

‖ā‖ +
√∥∥G−1/2v̄1

∥∥2 + ∥∥G1/2v̄2
∥∥2 + 2

∥∥G−1/2v̄1
∥∥ ∥∥G1/2v̄2

∥∥)
≤ √

1 + 2κ
(

‖ā‖ + √
2
√∥∥G−1/2v̄1

∥∥2 + ∥∥G1/2v̄2
∥∥2) . (20)

On the other hand, by (20), we have√∥∥G−1/2v1
∥∥2 + ∥∥G1/2v2

∥∥2
≤

√∥∥G−1/2(v1 − v̄1)
∥∥2 + ∥∥G1/2(v2 − v̄2)

∥∥2 +
√∥∥G−1/2v̄1

∥∥2 + ∥∥G1/2v̄2
∥∥2

≤ √
1 + 2κ ‖ā‖ +

(
1 + √

2 + 4κ
)√∥∥G−1/2v̄1

∥∥2 + ∥∥G1/2v̄2
∥∥2

≤ √
1 + 2κ

(
‖ā‖ + 3

√∥∥G−1/2v̄1
∥∥2 + ∥∥G1/2v̄2

∥∥2) . (21)

Therefore, by (21), we have√∥∥G−1/2v1
∥∥2 + ∥∥G1/2v2

∥∥2 ≤ √
1 + 2κ

(‖ā‖ + 3ζ
)
,

which completes the proof.

Since the proof techniques of the following lemma are the same as in Lemma 4.6 in [21], we will
only present it without proof.
Lemma 4.5: Let G = L(̃s)−1L(̃x), (̃x, s̃) and (�x̃1, �̃s1) generated by Algorithm 1. Then we have

inf
{∥∥G−1/2�x̃1

∥∥2 + ∥∥G1/2�̃s1
∥∥2 : Ã(�x̃1) − �̃s1 = ρ̃

}
≤ 4(1 + 4κ)2

r2μ(
1 − β

)
τ

.

Lemma 4.6 (Lemma 5.2 in [15]): Let (̃x, s̃) ∈ N (τ , β). Then

Tr(τμe − x̃ ◦ s̃)+ ≤ √
rβτμ.

Lemma 4.7 (Lemma 5.3 in [15]): Let (̃x, s̃) generated by Algorithm 1. Then, we have∥∥(L(̃x)L(̃s))−1/2 [(τμe − x̃ ◦ s̃)− + √
r (τμe − x̃ ◦ s̃)+

]∥∥2 ≤ (1 + βτ)rμ.

Lemma 4.8: Let G = L(̃s)−1L(̃x), (̃x, s̃) and (�x̃1, �̃s1) generated by Algorithm 1. Then, there
exists a constant ω ≥ 12, such that∥∥G−1/2�x̃1

∥∥2 + ∥∥G1/2�̃s1
∥∥2 ≤ ω2(1 + 2κ)3r2μ.
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Proof: Applying Lemma 4.4 to the system (8), Lemmas 4.5 and 4.7, we obtain

∥∥G−1/2�x̃1
∥∥2 + ∥∥G1/2�̃s1

∥∥2 ≤ (1 + 2κ)

(√
(1 + βτ)μr + 6(1 + 4κ)r

√
μ(

1 − β
)
τ

)2

≤ (1 + 2κ)
(
1 + 6(1 + 4κ)

)2
η2r2μ ≤ (1 + 2κ)

(
12(1 + 2κ)

)2
η2r2μ,

where, η = max
{√

(1 + βτ),
√

1(
1−β

)
τ

}
≥ 1. By ω := 12η, the proof is completed.

Lemma 4.9: Let G = L(̃s)−1L(̃x). Then we have

(1) : ∣∣Tr (�x̃1 ◦ �̃s1
)∣∣ ≤ 1

2ω
2(1 + 2κ)3r2μ,

(2) : ∣∣Tr (�x̃2 ◦ �̃s2
)∣∣ ≤ 1

2 (1 + 2κ)(1 + βτ)rμ,
(3) : ∣∣Tr (�x̃1 ◦ �̃s2

)∣∣ ≤ ω
√
1 + βτ(1 + 2κ)2r3/2μ,

(4) : ∣∣Tr (�x̃2 ◦ �̃s1
)∣∣ ≤ ω

√
1 + βτ(1 + 2κ)2r3/2μ.

Proof: Using Lemma 4.8, we obtain∣∣Tr (�x̃1 ◦ �̃s1
)∣∣ = ∣∣Tr ((G−1/2�x̃1

) ◦ (
G1/2�̃s1

))∣∣
≤ ∥∥G−1/2�x̃1

∥∥ ∥∥G1/2�̃s1
∥∥ ≤ 1

2

(∥∥G−1/2�x̃1
∥∥2 + ∥∥G1/2�̃s1

∥∥2)
≤ 1

2
ω2(1 + 2κ)3r2μ, (22)

which implies the first part of the lemma. From Lemmas 4.3 and 4.7, we have∥∥G−1/2�x̃2
∥∥2 + ∥∥G1/2�̃s2

∥∥2 ≤ (1 + 2κ)(1 + βτ)rμ. (23)

Similar to the proof of (22) and using (23), we can obtain the second part.
By Lemma 4.8 and (23), we derive∣∣Tr (�x̃1 ◦ �̃s2

)∣∣ = ∣∣Tr ((G−1/2�x̃1
) ◦ (

G1/2�̃s2
))∣∣

≤ ∥∥G−1/2�x̃1
∥∥ ∥∥G1/2�̃s2

∥∥ ≤ ω
√
1 + βτ(1 + 2κ)2r3/2μ,

which implies the third part. Similarly, we also obtain∣∣Tr (�x̃2 ◦ �̃s1
)∣∣ ≤ ω

√
1 + βτ(1 + 2κ)2r3/2μ,

which follows the forth part. The proof is completed.

Lemma 4.10: Let G = L(̃s)−1L(̃x). Then we have

(a) : ∥∥G−1/2�x̃3
∥∥2 + ∥∥G1/2�̃s3

∥∥2 ≤ 11
5 (1 + 2κ)(1 + βτ)rμ,

(b) : ‖�x̃c ◦ �̃sc‖ ≤ 121
(
cond(G)

)3/2
(1+2κ)3(1+βτ)2r2μ

200(1−β)τ
,

(c) : ∣∣Tr (�x̃c ◦ �̃sc
)∣∣ ≤ 121(1+2κ)3cond(G)(1+βτ)2r2μ

200(1−β)τ
,

(d) : ∣∣Tr (�x̃3 ◦ �̃sc
)∣∣ ≤ 9

√
cond(G)(1+2κ)2(1+βτ)3/2r3/2μ

5
√

(1−β)τ
,

(e) : ∣∣Tr (�̃s3 ◦ �x̃c
)∣∣ ≤ 9

√
cond(G)(1+2κ)2(1+βτ)3/2r3/2μ

5
√

(1−β)τ
.
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Proof: Using Lemma 4.7 and (10), we have

∥∥G−1/2�x̃3
∥∥2 + ∥∥G1/2�̃s3

∥∥2 = ∥∥G−1/2�x̃3 + G1/2�̃s3
∥∥2 − 2Tr

(
�x̃3 ◦ �̃s3

)
≤ (1 + βτ)rμ + 6

5 (1 + 2κ)(1 + βτ)rμ ≤ 11
5 (1 + 2κ)(1 + βτ)rμ,

which follows the inequality (a). From the first part and Lemma 4.1, we derive

‖�x̃3 ◦ �̃s3‖ ≤ 11
10

√
cond(G)(1 + 2κ)(1 + βτ)rμ.

In the same way as the proof of Lemma 2 in [27], from Lemma 4.3 and the previous inequality, we
obtain

∥∥G−1/2�x̃c
∥∥2 + ∥∥G1/2�̃sc

∥∥2 ≤ (1 + 2κ)
∥∥G−1/2�x̃c + G1/2�̃sc

∥∥2
= (1 + 2κ)

∥∥∥(L(̃x)L(̃s)
)−1/2 (−�x̃3 ◦ �̃s3

)∥∥∥2 ≤ (1 + 2κ)

(1 − β)τμ
‖�x̃3 ◦ �̃s3‖2

≤ 121(1 + 2κ)3cond(G)(1 + βτ)2r2μ
100(1 − β)τ

. (24)

Using Lemma 4.1 in (24), the inequality (b) is obtained.
Since

∣∣Tr (�x̃c ◦ �̃sc
)∣∣ ≤ 1

2

(∥∥G−1/2�x̃c
∥∥2 + ∥∥G1/2�̃sc

∥∥2), it follows that
∣∣Tr (�x̃c ◦ �̃sc

)∣∣ ≤ 121(1 + 2κ)3cond(G)(1 + βτ)2r2μ
200(1 − β)τ

.

Using (a) and (24), it readily follows that

∣∣Tr (�x̃3 ◦ �̃sc
)∣∣ = ∣∣Tr ((G−1/2�x̃3

) ◦ (
G1/2�̃sc

))∣∣
≤ ∥∥G−1/2�x̃3

∥∥ ∥∥G1/2�̃sc
∥∥ ≤ 9

√
cond(G)(1 + 2κ)2(1 + βτ)3/2r3/2μ

5
√

(1 − β)τ
.

Similarly, we have

∣∣Tr (�̃s3 ◦ �x̃c
)∣∣ ≤ 9

√
cond(G)(1+2κ)2(1+βτ)3/2r3/2μ

5
√

(1−β)τ
.

This completes the proof.

From (24), Lemmas 4.1 and 4.10, we have

‖�x̃3‖ ‖�̃sc‖ ≤ 9(1+2κ)2cond(G)(1+βτ)3/2r3/2μ
5
√

(1−β)τ
,

‖�̃s3‖ ‖�x̃c‖ ≤ 9(1+2κ)2cond(G)(1+βτ)3/2r3/2μ
5
√

(1−β)τ
.

(25)

Lemma 4.11: The maximum size δ, that keeps (10), satisfies

δ ≥ 1
25ω(1 + 2κ)r1/2

:= δ0.
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Proof: Using Lemma 4.9, we have

Tr
(
�x̃3 ◦ �̃s3

) + 3
5
(1 + 2κ)(1 + βτ)rμ = δ2Tr

(
�x̃1 ◦ �̃s1

) + (1 − δ)2Tr
(
�x̃2 ◦ �̃s2

)
+ δ(1 − δ)Tr

(
�x̃1 ◦ �̃s2 + �̃s1 ◦ �x̃2

) + 3
5
(1 + 2κ)(1 + βτ)rμ

≥ δ2
(

−1
2
ω2(1 + 2κ)3r2μ

)
+ (1 − δ)2

(
−1
2
(1 + 2κ)(1 + βτ)rμ

)
+ δ(1 − δ)

(
−2ω

√
1 + βτ(1 + 2κ)2r3/2μ

)
+ 3

5
(1 + 2κ)(1 + βτ)rμ

≥ δ2
(

−1
2
ω2(1 + 2κ)3r2μ

)
− 1

2
(1 + 2κ)(1 + βτ)rμ

− 2δω
√
1 + βτ(1 + 2κ)2r3/2μ + 3

5
(1 + 2κ)(1 + βτ)rμ

= −(1 + 2κ)rμ
[
1
2
δ2ω2(1 + 2κ)2r + 2δω

√
1 + βτ(1 + 2κ)r1/2 − 1

10
(1 + βτ)

]
:= −(1 + 2κ)rμf (δ).

In order to find a lower bound for δ satisfying (10), it suffices to obtain δ such that f (δ) ≤ 0. The
quadratic equation f (δ) = 0 has a unique positive root

δ̂ =
−2ω

√
1 + βτ(1 + 2κ)r1/2 +

√
21
5 ω

√
(1 + βτ)(1 + 2κ)r1/2

ω2(1 + 2κ)2r

≥ 1
25ω(1 + 2κ)r1/2

,

which follows the desired result.

From (16), it is obvious that

μ̃(α) = μ(α) = μ + α

[
(τ − 1)μ +

√
r − 1
r

Tr(τμe − x̃ ◦ s̃)+
]

+ 1
r
Tr(�x̃(α) ◦ �̃s(α)). (26)

Lemma 4.12: Let β ≤ 1/2 and τ ≤ 1/4. Then the maximum step size α such that μ(α) decreases in
[0, α], satisfies

α ≥
(
(1 − β)τ

)1/3 √
1 − βτ − τ

5
(
cond(G)

)1/3
(1 + 2κ)(1 + βτ)3/4r1/3

:= ᾱ0.

Proof: From (17), (26) and Lemma 4.6, we obtain

μ′(α) = (τ − 1)μ +
√
r − 1
r

Tr(τμe − x̃ ◦ s̃)+ + 1
r
Tr′(�x̃(α) ◦ �̃s(α))

≤ τμ − μ +
√
r − 1
r

√
rβτμ + 3α2

r
Tr

(
�x̃3 ◦ �̃sc + �̃s3 ◦ �x̃c

) + 4α3

r
Tr

(
�x̃c ◦ �̃sc

)
≤ (

τ + βτ − 1
)
μ + 3α2

r
Tr

(
�x̃3 ◦ �̃sc + �̃s3 ◦ �x̃c

) + 4α3

r
Tr

(
�x̃c ◦ �̃sc

)
≤

[ (
τ + βτ − 1

) + α2 54
√
cond(G)(1 + 2κ)2(1 + βτ)3/2r1/2

5
√

(1 − β)τ

+ α3 121(1 + 2κ)3cond(G)(1 + βτ)2r
50(1 − β)τ

]
μ, (27)
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where the third inequality follows from Lemma 4.10. Let f1(α) be defined as follows:

f1(α) := (
τ + βτ − 1

) + α2 54
√
cond(G)(1 + 2κ)2(1 + βτ)3/2r1/2

5
√

(1 − β)τ

+ α3 121(1 + 2κ)3cond(G)(1 + βτ)2r
50(1 − β)τ

.

Therefore,

f1(ᾱ0) = (
τ + βτ − 1

) + 54
(
(1−β)τ

)1/6(1−βτ−τ
)

125
(
cond(G)

)1/6
r1/6

+ 121
(
1−βτ−τ

)3/2
6250(1+βτ)1/4

≤ 0,

which implies that for all α ∈ [0, ᾱ0], μ′(α) ≤ 0. This completes the proof.

In the following, we give a sufficient condition to keep all the iterates in the neighbourhood
N (τ , β). In order to keep the iterates in this neighbourhood, we need the following lemma.
Lemma 4.13: Let 0 < μ(α) decreases in [0, α]. Then we have⎧⎨⎩

∥∥∥(τμ(α)e − T(α)
)+∥∥∥ ≤ (

1 − α
√
r
)
βτμ(α)∥∥∥(τμ(α)e − T(α)

)+∥∥∥ = 0

if α < 1/
√
r,

if α ≥ 1/
√
r.

Proof: The proof is similar to the proof of Lemma 5.8 in [15], therefore it is omitted.

Lemma 4.14: Let β ≤ 1/2, τ ≤ 1/4 and α̂ be as defined in Step 6 of Algorithm 1. Then

α̂ ≥
√

βτ
(
(1 − β)τ

)1/3
5(1 + 2κ)

√
cond(G)(1 + βτ)3/4r1/2

:= α̂0.

Proof: If α̂ ≥ 1/
√
r, then we have α̂ ≥ α̂0, which follows the lemma. Thus, we will restrict ourselves

to the case where α̂ < 1/
√
r.

Using (17), (25), Lemmas 2.6, 4.10 and 4.13, we have∥∥∥(τμ(α)e − x̃(α) ◦ s̃(α)
)+∥∥∥ ≤

∥∥∥(τμ(α)e − T(α)
)+∥∥∥ +

∥∥∥(�x̃(α) ◦ �̃s(α)
)−∥∥∥

≤ (
1 − α

√
r
)
βτμ(α) + α3 18(1 + 2κ)2cond(G)(1 + βτ)3/2r3/2μ

5
√

(1 − β)τ

+ α4 121
(
cond(G)

)3/2
(1 + 2κ)3(1 + βτ)2r2μ

200(1 − β)τ
. (28)

Using (26) and Lemma 4.10, we have

μ(α) ≥ μ + α(τ − 1)μ + 1
r
Tr

(
�x̃(α) ◦ �̃s(α)

)
≥ μ + α(τ − 1)μ − α3

r
(∣∣Tr (�x̃3 ◦ �̃sc

)∣∣ + ∣∣Tr (�̃s3 ◦ �x̃c
)∣∣) − α4

r
∣∣Tr (�x̃c ◦ �̃sc

)∣∣
≥ [

1 + α(τ − 1)
]
μ − α3 18(1 + 2κ)2

√
cond(G)(1 + βτ)3/2r1/2μ
5
√

(1 − β)τ

− α4 121
(
cond(G)

)
(1 + 2κ)3(1 + βτ)2rμ

200(1 − β)τ
. (29)
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From (28) and (29), we obtain

∥∥∥(τμ(α)e − x̃(α) ◦ s̃(α)
)+∥∥∥ − βτμ(α) ≤ α3 18(1 + 2κ)2cond(G)(1 + βτ)3/2r3/2μ

5
√

(1 − β)τ

+ α4 121
(
cond(G)

)3/2
(1 + 2κ)3(1 + βτ)2r2μ

200(1 − β)τ
− α

√
rβτμ(α)

≤ α
√
rβτμ

(
α2 18(1 + 2κ)2cond(G)(1 + βτ)3/2r

5βτ
√

(1 − β)τ

+ α3 121
(
cond(G)

)3/2
(1 + 2κ)3(1 + βτ)2r3/2

200βτ(1 − β)τ

+ α3 18(1 + 2κ)2
√
cond(G)(1 + βτ)3/2r1/2

5
√

(1 − β)τ

+ α4 121
(
cond(G)

)
(1 + 2κ)3(1 + βτ)2r

200(1 − β)τ
+ α(1 − τ) − 1

)
:= α

√
rβτμf2(α). (30)

Thus, it is easily concluded that

f2(α̂0) = 18
(
(1 − β)τ

)1/6
125

+ 121
√

βτ

25000(1 + βτ)1/4

+ 18
(
βτ

)3/2 √
(1 − β)τ

625(1 + 2κ)cond(G)(1 + βτ)3/4r
+ 121

(
βτ

)2 (
(1 − β)τ

)1/3
125000(1 + 2κ)cond(G)(1 + βτ)r

+
√

βτ
(
(1 − β)τ

)1/3
(1 − τ)

5(1 + 2κ)
√
cond(G)(1 + βτ)3/4r1/2

− 1 ≤ 0. (31)

From (30) and (31), we have for all α ∈ [0, α̂0],∥∥∥(τμ(α)e − x̃(α) ◦ s̃(α)
)+∥∥∥ ≤ βτμ(α).

Then, by Lemma 2.5, we have det(̃x(α)) 
= 0 and det(̃s(α)) 
= 0 for all α ∈ [0, α̂0]. Since det(̃x(0)) =
det(̃x) > 0 and det(̃s(0)) = det(̃s) > 0, by continuity, it follows that in this interval x̃(α) ∈ int K and
s̃(α) ∈ int K. On the other hand, since β ≤ 1/2 and τ ≤ 1/4, we have α̂0 ≤ ᾱ0. This completes the
proof of the lemma.

4.1. Polynomial complexity

In this subsection, we present the polynomial complexity for Algorithm 1.
Theorem 4.15: The Algorithm 1 terminates in

O
(√

cond(G)(1 + κ)2r log ε−1
)

iterations with (xk, sk) such that
∥∥sk − A(xk) − q

∥∥ ≤ ε
∥∥s0 − A(x0) − q

∥∥ and 〈xk, sk〉 ≤ ε〈x0, s0〉.
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Proof: In the same way as the proof of (27), using Lemmas 4.10 and 4.12, we can easily verify that

μ(α̂) ≤ μ(α̂0)

= μ + α̂0

[
(τ − 1)μ +

√
r − 1
r

Tr
(
(τμe − x̃ ◦ s̃)+

)] + 1
r
Tr

(
�x̃(α̂0) ◦ �̃s(α̂0)

)
≤ μ + α̂0

[
(τ − 1)μ +

√
r − 1
r

Tr
(
(τμe − x̃ ◦ s̃)+

)]
+ α̂3

0
r

(∣∣Tr (�x̃3 ◦ �̃sc
)∣∣ + ∣∣Tr (�̃s3 ◦ �x̃c

)∣∣) + α̂4
0
r

∣∣Tr (�x̃c ◦ �̃sc
)∣∣

≤ [
1 − α̂0

(
1 − τ − βτ − α̂2

0
18

√
cond(G)(1 + 2κ)2(1 + βτ)3/2r1/2

5
√

(1 − β)τ

− α̂3
0
121(1 + 2κ)3cond(G)(1 + βτ)2r

200(1 − β)τ

)]
μ. (32)

Substituting α̂0 =
√

βτ
(
(1−β)τ

)1/3
5(1+2κ)

√
cond(G)(1+βτ)3/4r1/2

into (32), we have

μ(α̂) ≤
[
1 − α̂0

(
1 − τ − βτ − 18

(
βτ

) (
(1 − β)τ

)1/6
125

√
cond(G)r1/2

− 121
(
βτ

)3/2
25000

√
cond(G)(1 + βτ)1/4r1/2

)]
μ

≤
[
1 − α̂0

(
1 − τ − βτ − 18

125
− 121

25000

)]
μ ≤

[
1 − α̂0

(
21279
25000

− τ − βτ

)]
μ

≤
[
1 − θ

√
βτ

(
(1 − β)τ

)1/3
10(1 + κ)

√
cond(G)(1 + βτ)3/4r1/2

]
μ,

where θ = ( 21279
25000 − τ − βτ

)
.

Thus, the inequality μ(α̂) ≤ εμ0 holds if(
1 − θ

√
βτ

(
(1−β)τ

)1/3
10(1+κ)

√
cond(G)(1+βτ)3/4r1/2

)k
≤ εμ0. (33)

It is easy to verify that if k ≥ 10(1+κ)
√
cond(G)(1+βτ)3/4r1/2 log ε−1

θ
√

βτ
(
(1−β)τ

)1/3 , then (33) holds.

Let δ0 = 1
25ω(1+2κ)r1/2 , from Remark 2, we have

ϕk = ‖sk − A(xk) − q‖
‖s0 − A(x0) − q‖ =

k∏
i=0

(1 − δiα̂i) ≤ (
1 − δ0α̂0

)k ,
which implies that ϕk ≤ ε when k ≥ log ε−1

δ0α̂0
.

The desired result immediately follows from the above inequality.

To obtain complexity of the algorithm for the NT search direction and the xs and sx search
directions, we use Theorem 4.15 and Lemma 4.2.
Corollary 4.16: If the NT search direction is used, the iteration complexity of Algorithm 1 is
O
(
(1 + κ)2r log ε−1). If the xs and sx search directions are used, the iteration complexities of Algorithm

1 are O((1 + κ)2r3/2 log ε−1).
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5. Concluding remarks

In this paper, we have presented and analysed a predictor-corrector infeasible-IPM based on a wide
neighbourhood for the Cartesian P∗(κ)-SCLCP. Using the theory of Euclidean Jordan algebras and
some elegant tools, we proved the convergence of the algorithm for a commutative class of search
directions that coincides with the currently best-known theoretical complexity bounds for infeasible-
IPMs for the Cartesian P∗(κ)-SCLCP. Compared with the results in [19,21], the complexity bound is
reduced by a factor of r.
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