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Abstract
In Guralnick and Moreto (Conjugacy classes, characters and products of elements,
arXiv:1807.03550v1, Theorem 4.2) it has been shown that if p �= q are two odd
primes, π = {2, p, q} and G is a finite group such that for every π -elements x, y ∈ G
with (O(x), O(y)) = 1, (xy)G = xG yG , then G does not have any composition
factors of order divisible by pq. In this note, inspired by the above result, we show
that if p and q are two primes (not necessarily odd) and G is a finite group such that
for every p-element x and q-element y ∈ G, (xy)G = xG yG , then G does not have
any composition factors of order divisible by pq. In particular, we show that if p is
an odd prime and G is a finite group such that for every p-element x and 2-element
y ∈ G, (xy)G = xG yG , then G is p-solvable.

Keywords The product of conjugacy classes · Almost simple groups · Irreducible
character degree
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1 Introduction

For a finite group G and x, y ∈ G, let x y = y−1xy and, xG and CG(x) denote the
conjugacy class of G containing x and the centralizer of x in G, respectively. The set
of irreducible complex characters ofG is denoted by I rr(G). Considering the product
of conjugacy classes gives us some information about the structure of the group. For
instance, in [1, p. 3], Arad and Herzog conjectured that if a finite group G contains a
pair (A, B) of conjugacy classes that AB is a conjugacy class too, thenG is not simple.
This conjecture was proved in [6] in various cases. While as mentioned in [7], simple
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cannot be replaced by almost simple in the Arad-Herzog conjecture, but we can see
that every almost simple group contains some pairs of conjugacy classes which their
product is not a conjugacy class (see Lemma 2.5). Dade andYadav showed that ifG is a
finite group such that for every x, y ∈ G with xG �= (y−1)G , (xy)G = xG yG , thenG is
solvable [3] and they classified such groups. Then Guralnick and Moreto [5] focused
on a finite group which the product of every two conjugacy classes of its primary
elements with the co-prime orders is a conjugacy class and showed that such groups
are solvable. Then they proved that if p �= q are two odd primes, π = {2, p, q} and
G is a finite group such that for every π -elements x, y ∈ G with (O(x), O(y)) = 1,
(xy)G = xG yG , then G does not have any composition factors of order divisible by
pq. Obviously, this result does not imply that G is either p-solvable or q-solvable.
In [5, Paragraph after Theorem 4.2], the authors guessed that in the above result the
assumption 2 ∈ π can be omitted. In this note, inspired by this impression, we prove
the following theorem:

Theorem 1.1 Let p �= q be two primes and G be a finite group. If (xy)G = xG yG

for every p-element x and q-element y ∈ G, then G does not have any composition
factors of order divisible by pq.

In [5, Theorem 2.5], it has been proved that if p is a prime and G is a finite group
such that xG yG = (xy)G for every p-element x and every p′-element of prime power
order y, then G is p-solvable. From Theorem 1.1, we can see that:

Corollary 1.2 Let p be an odd prime and G be a finite group. If (xy)G = xG yG for
every p-element x and 2-element y ∈ G, then G is p-solvable.

Proof Since by Theorem 1.1, G does not have any composition factors of order divis-
ible by 2p, we get that G is p-solvable. ��

Note that in Corollary 1.2, p-solvability cannot be replaced by solvability, for
instance, let G = A × S, where A is an abelian p-group and S is a simple p′-group.

2 Main results

Every simple group of Lie type S in characteristic r has an irreducible character of
degree |S|r , the order of r -Sylow subgroup of S, which is called the Steinberg character
of S.

Lemma 2.1 [10,11] Let N be a normal subgroup of a group G, and suppose that N is
isomorphic to a finite simple group of Lie type. If St is the Steinberg character of N ,
then St extends to G.

Lemma 2.2 [5, Lemma 2.3] Let G be a finite group and let x, y ∈ G. Then (xy)G =
xG yG if and only if χ(1)χ(xa yb) = χ(x)χ(y) for every a, b ∈ G and χ ∈ I rr(G).

Lemma 2.3 [6, Theorem 1.6] Let G be a finite simple group of Lie type, and let St
denote the Steinberg character of G. If a, b ∈ G −{1} are semi-simple elements, then
St is not constant on aGbG.
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Lemma 2.4 [8, Theorem A (Main Theorem)] Let p and q be distinct odd primes and
let G be a finite group. The following statements are equivalent:

(i) G contains a composition factor whose order is divisible by pq;
(ii) G contains a (2, p, q)-triple, where a (2, p, q)-triple means a triple (x, y, z) of

nontrivial elements in G where x is a 2-element, y a p-element, z an q-element
such that xyz = 1.

Lemma 2.5 Let p �= q be two primes, π = {p, q} and S be a non-abelian simple
group such that p, q | |S|. If S � G � Aut(S), then there exist π -elements x, y ∈ S
with (O(x), O(y)) = 1 such that xG yG �= (xy)G.

Proof Bywayof contradiction, let for everyπ -elements x, y ∈ Swith (O(x), O(y)) =
1, xG yG = (xy)G . If S is a Sporadic simple group or Tits group, then the proof fol-
lows by checking [2] and [9]. If S = Altn , n ≥ 5 and n �= 6, then the proof follows
from [4]. Note that Alt6 ∼= PSL2(9). Now let S be a simple group of Lie type in
characteristic r . Thus S has a Steinberg character St which is an irreducible character
of S such that St(u) = |CS(u)|r for every r ′-element u ∈ S and otherwise, St(u) = 0.
By Lemma 2.1, St is extendible to G, so there exists χ ∈ I rr(G) such that χS = St .
For every π -elements x, y ∈ S with (O(x), O(y)) = 1, every a, b ∈ S and every
ϕ ∈ I rr(G), since xG yG = (xy)G , Lemma 2.2 forces ϕ(x)ϕ(y) = ϕ(xa yb)ϕ(1).
Thus χ(x)χ(y) = χ(1)χ(xa yb) and hence, St(x)St(y) = St(1)St(xa yb). If
p, q �= r , then x and y are semi-simple elements of S, so by Lemma 2.3, St is not con-
stant on x S yS . On the other hand, for every a, b ∈ S, St(1)St(xa yb) = St(x)St(y).
This implies that there exists a constant α such that |S|r St(xa yb) = α and hence, St
is constant on x S yS , which is a contradiction.

Therefore, r ∈ {p, q}. Without loss of generality, let r = p. Thus St(x)St(y) = 0
and hence, St(xy) = 0. So p | O(xy). Now we continue the proof in the following
cases:

(i) p = 2. Since S is a simple group, there exist at least three prime divisors of the
order of S. Thus there exists a prime divisor t �= p, q of the order of S and hence,
Lemma 2.4 shows that there exist a p-element x , a q-element y and a t-element z
in S−{1} such that xyz = 1. Thus O(xy) = O(z) = tα is not divisible by p = 2,
a contradiction.

(ii) p �= 2. Then since 2 | |S|, we get from Lemma 2.4 that there exist a p-element
x , a q-element y and a 2-element z in S − {1} such that xyz = 1. Thus O(xy) =
O(z) = 2α is not divisible by p, a contradiction.

These contradictions complete the proof. ��
Proof of Theorem 1.1 Let G be a minimal counterexample. Since every quotient of
G satisfies the assumption of theorem, we can assume that every minimal normal
subgroup of G is a direct product of non-abelian simple groups of order divisible by
pq. If N ∼= S1 × · · · × Sm is a minimal normal subgroup of G, then pq | |S1| and by
minimality of G, G/N dos not contain any composition factors of order divisible by
pq. Hence, N is the unique minimal normal subgroup ofG. Now let T = {g1, . . . , gk}
be a left transversal set of N in G and M = NG(S1). Then for every t ∈ N ,

tG = {t g : g ∈ G} = {t gi n : 1 ≤ i ≤ k, n ∈ N } = ∪k
i=1(t

gi )N .
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Thus for every a, b ∈ M and π -elements x, y ∈ S1 with (O(x), O(y)) = 1, xa yb ∈
xM yM ⊆ xG yG = (xy)G = ∪k

i=1((xy)
gi )N and hence, there exist 1 ≤ i ≤ k and

n ∈ N such that xa yb = (xy)gi n . Therefore, (xy)gi = nxa ybn−1 ∈ nS1n−1 =
S1, so xy ∈ S1 ∩ gi S1g

−1
i . Since S1 � N , gi S1g

−1
i � gi Ng−1

i = N . Therefore,
{1} �= S1 ∩ gi S1g

−1
i � S1, so simplicity of S1 forces gi S1g

−1
i = S1 and hence,

gi ∈ NG(S1) = M . Note that N ≤ M . Thus ((xy)gi )N ⊆ (xy)M . This implies
that xM yM ⊆ (xy)M and hence, xM yM = (xy)M . This guarantees that for every
π -elements x, y ∈ S1 with (O(x), O(y)) = 1, (xy)M = xM yM and hence, for every
π -elements x̄, ȳ ∈ S1 with (O(x̄), O(ȳ)) = 1, (x̄)M̄ (ȳ)M̄ = (x̄ y)M̄ , where x̄ , ȳ and
x̄ y are the images of x, y, xy ∈ S1 in M̄ = M/CG(S1). This allows us to deduce
that there exists a group H such that S1 � H � Aut(S1) and for every π -elements
x, y ∈ S1, xH yH = (xy)H , which is a contradiction with Lemma 2.5. This completes
the proof. ��
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