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The nonlinear free vibration and principal parametric resonance of rotating beams are
investigated taking into account the lagging-axial coupling motion due to Coriolis force.
This work tackles analytically the problem of parametric resonances induced by periodic
modulation of the angular speed. The nonlinear equations of motion are obtained via a
direct Lagrangian formulation. The method of multiple scales is employed to perform a per-
turbation analysis of the nondimensional equations of motion to deliver the effective non-
linearity of the lagging and axial modes and the critical conditions for the onset of
parametric resonances. A comprehensive study on the effect of the rotational speed and
the damping ratio on the modes nonlinearity and on the instability regions is presented.
Comparisons in terms of effective nonlinearity coefficient and principal parametric reso-
nance response were carried out so as to illustrate the importance of the exact geometrical
formulation against ad hoc beam theories such as the Euler-Bernoulli beam model.

� 2020 Elsevier Ltd. All rights reserved.
1. Introduction

The wide use of rotating blades in aerospace industries, wind, water and gas turbines requires a very accurate design
involving, necessarily, sophisticated mechanical modeling. Rotating blades can suffer different instabilities due to their flex-
ibility and light damping. When a blade is subjected to certain critical angular speeds, several autoparametric resonances can
be excited involving various modes, among which axial, flapping and lagging modes. Besides energy transfers between
modes giving rise to multimode vibrations, single-mode parametric resonances can be excited when the angular speed
has a slight periodic modulation such that the modulation frequency is close to twice the frequency of the parametrically
driven mode. This can happen due to rotor unbalances or as a consequence of prescribed ramps of the angular speed. This
work addresses this kind of parametric resonance by discussing the instability regions for various modes obtained in semi-
closed form.

More complex instability scenarios can involve multi-mode parametric resonances of sum or difference type whereby the
mode frequencies are combined with the angular speed modulation frequency to generate resonant frequencies. These types
of resonances are not covered in the present work. In addition, nonlinear free vibrations of rotating beams, whose kinematics
are described by an exact geometrical formulation, are examined. A deep investigation of the effect of the rotating speed and
the damping ratio on the nonlinear interactions between the beam lagging and axial normal modes and the parametric res-
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onance excitations are unfolded both as critical and post-critical conditions. The importance of accounting for large ampli-
tude deformations in slender structural elements is largely documented in the literature.

Among several studies performed in the past, a novel geometrically exact nonlinear model of highly deformable wings
coupled with aerodynamic models, including nonlinearities associated with the presence of aerodynamic stall and flow sep-
aration, was proposed by Arena et al. [1] to study the aeroelastic behavior of HALE wings for an improved understanding of
the nonlinear phenomena occurring when the unsteady aerodynamic effects and dynamic stall contribute more significantly
to the wing dynamic behavior.

Hodges and Dowell [2] developed a formulation for rotating asymmetric, slender blades with span-wise variable pretwist
angle and a small precone angle. The authors introduced important nonlinear terms such as the flapping-lagging inertial cou-
pling terms and the bending-torsional coupling terms which they may destabilize the hingeless rotor. The Hamilton’s prin-
ciple was employed by Crespo da Silva and Hodges [3] to obtain the nonlinear equations of motion of a rotating blade with a
precone angle and a variable pitch angle. These equations were adopted in a successive work [4] to investigate the equilib-
rium and stability of a uniform cantilever untwisted rotor blade in hover. The authors inferred that the most significant cubic
nonlinear terms playing a crucial role in the instability of the blade are the structural geometric nonlinearities in the tor-
sional equation of motion. By considering the warping displacements and the Rodrigues angles, Hodges developed in [5]
a nonlinear intrinsic formulation for the dynamic analysis of rotating pre-curved and pre-twisted anisotropic blades. The
governing equations of motion were obtained via a mixed approach, resorting to Newtonian and variational procedures.
In [6], Hodges clarified the special influences of the boundary conditions and the effects of the centrifugal forces on the
eigenvalue problem of rotating Timoshenko beams. Pesheck et al. [7] employed the invariant manifolds to construct the non-
linear normal modes of rotating beams. The equations of motion were derived by using the Hamilton’s principle based on the
von Karman strain-displacement relationship. The authors calculated the nonlinear normal modes to obtain the reduced-
order models for rotating beams.

By resorting to Hamilton’s principle, Avramov et al. [8] obtained the equations of motion for a slender rotating beam with
variable cross section. The eccentricity of the elastic center with respect to the center of mass was considered and the inter-
action between the flexural and torsional modes was examined. The authors employed the method of multiple scales (MMS)
to study the type of nonlinearity in rotating blades. Saravia et al. [9] implemented the principle of virtual work to derive the
governing equations of thin-walled composite rotating blades. The warping of the cross section and the eccentricity between
the elastic and the center of mass were considered and the parametric resonance of the blade was investigated by using the
finite element method. The authors concluded that by increasing the blade rotating speed the instability regions shift to the
right. Turhan and Bulut [10] developed a formulation for inward and outward oriented rotating beams regarding the geo-
metric and inertial nonlinearities up to the cubic order. They applied the Lindstedt-Poincaré method on the discretized equa-
tions of motion obtained by Galerkin projection to define the frequency response curves. The authors showed that the type of
nonlinearity can suffer changes by variations of the rotating speed. Valverde and Garcia-Vallejo [11] implemented an abso-
lute nodal coordinate formulation (ANCF) as well as a geometrically exact nonlinear formulation based on the Cosserat the-
ory of rods to model the rotating beams. The found instability was related to a nontrivial configuration at a certain speed. By
comparing the results of the ANCF with those obtained via exact formulation, the authors showed that the instability is arti-
ficially related to the ANCF. Qin and Li [12] studied the natural frequencies of rotating composite beams in hygrothermal
environment. The outcomes reveal the unappreciable influence of the temperature change and moisture concentration on
the natural frequencies. Sabater and Rhoads [13] examined the parametric system identification of a viscoelastic microbeam
with large amplitude vibrations by curve fitting the experimental data using the approximate solution obtained by the aver-
aging method. The outcomes clarify that the approximate solution can give rise to some issues in the determination of the
precise parameters. Tresser and Bucher [14] developed a new formulation to defeat the inability of measuring deformation
for parametrically excited low-speed spinning shafts subjected to unbalance forces. The proposed method increases the sen-
sitivity to the balancing process for such unbalanced forces without needing to rotate the shaft in the high-speed region.

A geometrically exact formulation of rotating blades, based on the Cosserat theory of rods, was developed by Lacarbonara
et al. [15]. The formulation accounted for the pre-twist angle and the eccentricity between the mass and elastic centers. The
internal constraint of unshearability was introduced in the mechanical formulation and the exact expressions of the
flapping-torsional and lagging-axial equations of motion were linearized about the prestressed configuration by employing
the Taylor expansion. The authors conducted parametric studies to investigate the influence of the rotating speed and the
Coriolis forces on the flapping, lagging, torsional and axial natural frequencies. Arvin et al. [16] derived the third order flap-
ping and axial equations of motion for rotating isotropic blades by applying the Taylor expansion on the exact formulation
developed in [15]. The direct MMS was applied to the third-order equations of motion so as to investigate the effects of the
rotating speed on the softening or hardening behaviour of isotropic rotating beams in the flapping modes. Arvin and Lacar-
bonara [17] extended their previous work [15] to composite rotating blades. They derived the exact constitutive relations for
the composite rotating blades employing the 3-dimensional continuum theory. The direct MMS was employed to study the
flapping-axial motion of the rotating composite blades. Arvin and Bakhtiari-Nejad [18] employed the Hamilton’s principle to
derive the governing equations of a rotating composite Timoshenko beam. They applied the direct MMS to calculate the non-
linear normal modes of the rotating composite Timoshenko beams in the absence of the internal resonances. They investi-
gated the effects of the rotation speed and the number of layers on the natural frequencies and the flapping backbone curves.

Nonlinear vibrations of rotating cylindrical shells undergoing thermo-mechanical loading were investigated by Liu et al.
[19]. The outcomes reveal the important effect of the parametric excitation rather than the external excitation in the non-
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linear dynamic response of the structure. Arvin [20] employed the first order direct MMS versus the Runge-Kutta method to
study the instability region of a rotating isotropic beam which undergoes principal parametric resonance due to the rotating
speed variation. The equations of motion were based on the von Karman strain-displacement relation. The author examined
the damping coefficient and the mode number influences on the parametric resonance instability regions. Some differences
between the instability regions predicted by the two mentioned methods were observed. To improve the understanding of
the observed differences between the numerical analysis and the MMS, Arvin et al. [21] applied the second order MMS vs.
the differential quadrature method to the governing equations of the rotating beams. The authors further demonstrated that
the instability region computed via second order MMS was very close to that obtained via numerical analysis. Heidari and
Arvin [22] studied the nonlinear free vibrations of rotating Timoshenko beams reinforced by carbon nanotubes (CNT)
employing the direct MMS. The outcomes revealed that the type of nonlinearity depends on the type of CNT distribution pro-
file and the rotation speed for thin beams while for thick beams just the CNT distribution profile has the decisive role. Effects
of the CNT weight fraction onto the flutter and post-flutter condition of nanocomposite panels were recently studied in [23]
by means of the multiple scales perturbation analysis which was carried out to characterize the flutter boundaries and the
type of Hopf bifurcation at flutter.

To the best of the authors’ knowledge, the nonlinear response of rotating beams subject to parametric resonances was not
investigated in the literature. Hence, in this paper nonlinear vibrations of the lagging-axial motion of symmetric rotating
beams are deeply examined and the influence of the Coriolis forces on the onset of the parametric resonance is investigated.
For symmetric beams, the flapping-torsional motions are coupled to each other due to the Coriolis forces which also cause
the coupling in the lagging-axial motions. Starting from the nonlinear mechanical model developed by these authors in [15],
the direct MMS is applied to the coupled equations of motion to characterize the effective nonlinearity coefficient and to
describe the stability regions of the parametric resonance of the lagging-axial motion. In particular, case-studies are pro-
posed to show the effects of the angular speed and the damping ratio on the aforementioned nonlinear features of the para-
metric response of the lowest three lagging modes and the first and second axial modes, respectively. Finally, comparisons in
terms of effective nonlinearity coefficient and principal parametric resonance response were carried out so as to illustrate
the importance of the exact geometrical formulation against ad hoc beam theories such as the Euler-Bernoulli beam model.

2. Mechanical model of rotating beams

The parametric model proposed in this work to study the nonlinear dynamic response of rotating beams is based on a
geometrically exact semi-intrinsic theory which yields the equations of motion obtained within the context of an Updated
Lagrangian Formulation (ULF) and fully derived in a recent work of the present authors [15]. In particular, to describe the
motion of the rotating beam, two configurations are considered, namely, the prestressed equilibrium configuration, induced
by the centrifugal forces, and the current dynamic configuration B. The latter, together with a close-up view of the beam
cross section, is schematically depicted in Fig. 1.

The kinematic description of the beam motion is provided in the Cartesian frame C; e1; e2 tð Þ; e3 tð Þf g fixed to the beam ref-
erence, stress-free, configuration B0. This frame has its origin C in the cross-section attached to the rotor (i.e., the beam root
cross-section) center of mass and it is rotating rigidly with angular speed xR tð Þ about the vertical axis i1 of the fixed frame
O; i1; i2; i3f g (see Fig. 1). In particular, the e3-axis is collinear with the beam span, while e1 and e2 axes lay in the root cross-
section plane, being, in turn, e1 collinear with the vertical fixed direction i1. Finally, the beam current configuration B is

described through the orientation of the local inertial frame CE; b1 tð Þ; b2 tð Þ; b3 tð Þ
n o

where, for symmetric beams, the mass

center C and the elastic center CE are coincident. Further details of the kinematic and mechanical modeling adopted in this
work can be found in [15].

The rotating beam model, is parameterized in the space coordinate s, collinear with the beam reference center line and
having its origin in the center of mass C of the root cross-section and its end at the beam tip, while the motion of the beam is
Fig. 1. Schematic of the top-view of the beam in the stress-free B0 and the current B configurations rotating about the axis i1 and a close-up view of the
cross section.
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described at time t. The reference position vector of the space coordinate read as ro ¼ d3 þ sð Þe3, where d3 is the rotor radius.
On the other hand, the position vector in the current, dynamic configuration is r ¼ ro þ u, where u ¼ u1e1 þ u2e2 þ u3e3 is the
incremental, dynamic displacement of the beam centerline and u1;u2 and u3 are the flapping, lagging, and axial displace-
ments, respectively.

The orthogonal tensor R s; tð Þ, whose expression is provided in [15], is then introduced to describe the orientation in space
and time of the local inertial frame as bk s; tð Þ ¼ R s; tð Þek tð Þ. The latter, differentiated with respect to the space coordinate s,
delivers the expression of the total curvature vector �l (i.e., @sbk s; tð Þ ¼ �l s; tð Þ � bk s; tð Þ, where @ stands for partial differenti-
ation), while @tbk s; tð Þ ¼ �x s; tð Þ � bk s; tð Þ gives the expression of the total angular velocity vector �x s; tð Þ. The component
forms of the curvature and the angular velocity vectors are reported in [15].

By introducing the vector no s; tð Þ of the prestressed contact force and the vectors f s; tð Þ and c s; tð Þ of the incremental exter-
nal force and couple per unit reference, respectively, the balance of linear and angular momentum provides the expressions
of the beam equations of motion. The latter, describe the change of configuration between the prestressed equilibrium and
the current, dynamic configuration in terms of incremental unknowns. Finally, the vectorial form of the equations of motion
reads:
@sn s; tð Þ þ f ¼ @t
�l� @t

�lo;

@sm s; tð Þ þ �m s; tð Þ � n s; tð Þ þ @su s; tð Þ � no s; tð Þ þ c ¼ @t
�h� @t

�ho;
ð1Þ
In Eq. (1), n ¼ Q1b1 þ Q2b2 þ Nb3 and m ¼ M1b1 þM2b2 þ Tb3 represent the incremental contact forces and contact cou-
ples, respectively, where Q1;Q2ð Þ are the shear forces, N is the axial force, M1;M2ð Þ are the bending moments, and T is the
torque. Moreover, �m s; tð Þ is the total stretch vector defined as �m s; tð Þ � @sr ¼ �g1 s; tð Þb1 s; tð Þ þ �g2 s; tð Þb2 s; tð Þ þ �m s; tð Þb3 s; tð Þ, with
�g1; �g2 being the total shear strains in the b1 s; tð Þ and b2 s; tð Þ directions, respectively, while �m is the total stretch. Finally,

@t
�lo; @t

�l; @t
�ho and @t

�h are the time rates of change of linear and angular momentum, respectively, in the prestressed (i.e.,
the parameters indicated by the superscript o) and the current configuration.

To study the interaction between the lagging and the axial motions, the beam dynamics are restrained into the
b2 s; tð Þ;b3 s; tð Þf g plane. In this case, the rotation tensor reads as follow:
R ¼
1 0 0
0 cos h1ð Þ sin h1ð Þ
0 � sin h1ð Þ cos h1ð Þ

2
64

3
75: ð2Þ
By neglecting the flapping displacement u1 s; tð Þ, the bending moment along b2 s; tð Þ and the torsional motion, the compo-
nent form of the equations of the lagging and axial motion in symmetric rotating beams can be written as
@sQ2 s; tð Þ cos h1 s; tð Þð Þ � @sN s; tð Þ sin h1 s; tð Þð Þ � �l1Q2 s; tð Þ sin h1 s; tð Þð Þ � �l1N s; tð Þ cos h1 s; tð Þð Þ
¼ qA@ttu2 s; tð Þ � 2qAxR@tu3 s; tð Þ � qAx2

Ru2 s; tð Þ � qA _xRu3 s; tð Þ;
@sQ2 s; tð Þ sin h1 s; tð Þð Þ þ @sN s; tð Þ cos h1 s; tð Þð Þ þ �l1Q2 s; tð Þ cos h1 s; tð Þð Þ � �l1N s; tð Þ sin h1 s; tð Þð Þ

¼ qA@ttu3 s; tð Þ þ 2qAxR@tu2 s; tð Þ � qAx2
Ru3 s; tð Þ þ qA _xRu2 s; tð Þ;

@sM1 s; tð Þ � �mQ2 s; tð Þ þ @su2 s; tð ÞN0 sð Þ ¼ qJS11@t �x1 � qJS11 _xR;

ð3Þ
where qA is the beam mass per unit reference length and qJS11 is the mass moment of inertia of the cross section about the
elastic center with respect to b1 s; tð Þ. Finally, the boundary conditions at the root and at the tip of the beam read
u2 0; tð Þ ¼ 0; u3 0; tð Þ ¼ 0; and h1 0; tð Þ ¼ 0;
Q2 L; tð Þ ¼ 0; N L; tð Þ ¼ 0; and M1 L; tð Þ ¼ 0:

ð4Þ
The same procedure proposed in [15] is here adopted to provide the curvature and the angular velocity vectors, respec-
tively, as
�l1 ¼ @sh1; �l2 ¼ 0; �l3 ¼ 0; ð5Þ

and
�x1 ¼ @th1 þxR tð Þ; �x2 ¼ 0; �x3 ¼ 0; ð6Þ

respectively.

For the case of symmetric beams, the equations describing the prestress state and the corresponding boundary conditions
reduce to N00 sð Þ þ qAx2

R d3 þ sþ u0
3 sð Þ� � ¼ 0 and u0

3 0ð Þ ¼ 0; N0 Lð Þ ¼ 0 (see [15]), respectively, where N0 sð Þ represents the
prestress axial force, the 0 denotes differentiation with respect to s.

By assuming an isotropic, linear elastic, constitutive behavior of the beam, the axial force and the bending moment can be
then expressed in terms of the corresponding deformation modes as N ¼ EA m� 1ð Þ and M1 ¼ EJS11l1, respectively, where m
and l1 are the incremental stretch and curvature, respectively, while EA is the axial stiffness and EJS11 is the lagging flexural
stiffness. The slenderness of typical beams employed in helicopters or wind turbines is such to allow the assumption of
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unshearable beam. Therefore, the internal kinematic constraint �g2 ¼ 0 is introduced to neglect the effect of the shear strain
along b2 and, hence, to obtain the relation between the bending rotation h1 s; tð Þ and the components of the gradient of u s; tð Þ
as h1 ¼ � arctan @su2= @su3 þ 1=m0inv sð Þ� �� �

, where m0inv sð Þ ¼ 1= 1þ u00
3 sð Þ� �

is the inverse of the prestress stretch. Furthermore,

the total stretch reads �m ¼ @su3 þ 1=m0inv sð Þ� �2 þ @su2
2

h i1=2
, while the expression of the shear force Q2 s; tð Þ can be obtained from

Eqs. (3)3 and substituted in Eqs. (3)1-2 to finally deliver the equations governing the lagging and the axial motions.

Nondimensionalization

By introducing the following nondimensional parameters: ŝ ¼ s=L; t̂ ¼ x0 t; û2 ¼ u2=L; û3 ¼ u3=L, where x0 ¼
ffiffiffiffiffiffiffiffi
EJS22
qAL4

r
, the

nondimensional form of the lagging and axial equations of motion, together with the associated boundary conditions at
s ¼ 1, read
I � €uþ G � _uþ L � uþ i 2ð Þ
1

_u; _uð Þ þ i 2ð Þ
2 u; €uð Þ þ i 3ð Þ

1 u; _u; _uð Þ þ i 3ð Þ
2 u;u; €uð Þ

þn 2ð Þ u;uð Þ þ n 3ð Þ u;u;uð Þ ¼ 0;
ð7Þ

IBC21 €u2ð Þ þ LBC21 u2ð Þ þ i 2ð Þ
BC21;1 _u; _uð Þ þ i 2ð Þ

BC21;2 u; €uð Þ þ i 3ð Þ
BC21;1 u; _u; _uð Þ

n

þi 3ð Þ
BC21;2 u;u; €uð Þ þ n 2ð Þ

BC21 u;uð Þ þ n 3ð Þ
BC21 u;u;uð Þ

o
js¼1 ¼ 0; ð8Þ

LBC22 u2ð Þ þ n 2ð Þ
BC22 u;uð Þ þ n 3ð Þ

BC22 u; u;uð Þ
n o

js¼1 ¼ 0;

LBC22 u3ð Þ þ n 2ð Þ
BC3 u;uð Þ þ n 3ð Þ

BC3 u;u; uð Þ
n o

js¼1 ¼ 0;
where u represents the 2 by 1 operator including the axial and the lagging components of the beam motion, i.e.,
u ¼ u2 s; tð Þu3 s; tð Þ½ �>, while I;G and L are the linear inertia and the gyroscopic and elastic stiffness operators, respectively,

whose expressions are given in Appendix A. Moreover, i 2ð Þ
0 ; i 2ð Þ

1 ; i 2ð Þ
2 and i 3ð Þ

0 ; i 3ð Þ
1 ; i 3ð Þ

2 are the quadratic and the cubic inertial
terms, respectively, and n 2ð Þ, and n 3ð Þ represent the quadratic and the cubic stiffness, respectively. The quadratic operators
are defined in Appendix B, while, for the sake of brevity, the third order operators are omitted.

Further nondimensional parameters adopted are: k ¼ xR
x0

;a12 ¼ EAL2

EJS11
;a22 ¼ EAL2

EJS22
;a32 ¼ EAL2

EJS33
and GJS33 ¼ EJS33

2 1þ�mð Þ , where �m is the

Poisson coefficient. Accordingly, for the case of symmetric beams the only relations which provide the prestressed configu-
ration and the associated boundary conditions, respectively, are simplified to a22u000

3 sð Þ þ k2 r þ sþ u0
3 sð Þ� � ¼ 0 and

u0
3 0ð Þ ¼ 0; N0 1ð Þ ¼ 0. Thus, the prestressed axial configuration has the following expression: u0

3 sð Þ ¼
sin kasð Þ sin kað Þð Þkrþ ffiffiffiffiffi

a22
p

cos kað Þð Þk þ cos kasð Þr � s� r, where ka ¼ kffiffiffiffiffi
a22

p and r ¼ d3
L .

3. Nonlinear free vibrations of the rotating beam

The direct method of multiple scales is adopted to perform a perturbation analysis of the equations of motion Eqs. (7) and
(8). The asymptotic expansion of the lagging and the axial displacements is considered in the form [26]:
u2 s; T0; T1; T2ð Þ ¼ eu2;0 s; T0; T1; T2ð Þ þ e2u2;1 s; T0; T1; T2ð Þ þ e3u2;2 s; T0; T1; T2ð Þ and
u3 s; T0; T1; T2ð Þ ¼ eu3;0 s; T0; T1; T2ð Þ þ e2u3;1 s; T0; T1; T2ð Þ þ e3u3;2 s; T0; T1; T2ð Þ, where e is a non-physical parameter used for
ordering the nonlinearity of the system, and T0 is the nondimensional fast time scale, while and T1 and T2 are the nondimen-
sional slow time scales [24]. By substituting the third-order expansion of the solution into Eqs. (7) and (8), a hierarchy of
problems of order e; e2, and e3, respectively, is obtained by equating to zero coefficients of like powers of e. Therefore, the
lowest three perturbation problems are given by

Order e
�I22D
2
0 u2;0½ � þ G23D0 u3;0½ � þ L22 u2;0½ � ¼ 0;

�I33D
2
0 u3;0½ � þ G32D0 u2;0½ � þ L33 u3;0½ � ¼ 0;

ð9Þ

�IBC21D
2
0 u2;0½ � þ LBC21 u2;0½ � ¼ 0;
LBC22 u2;0½ � ¼ 0;
LBC3 u3;0½ � ¼ 0;

ð10Þ
Order e2
�I22D
2
0 u2;1½ � þ G23D0 u3;1½ � þ L22 u2;1½ � ¼ RHS O 2ð Þ

Eq2

� �
;

�I33D
2
0 u3;1½ � þ G32D0 u2;1½ � þ L33 u3;1½ � ¼ RHS O 2ð Þ

Eq3

� �
;

ð11Þ
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�IBC21D
2
0 u2;1½ � þ LBC21 u2;1½ � ¼ RHS O 2ð Þ

BC21

� �
;

LBC22 u2;1½ � ¼ RHS O 2ð Þ
BC22

� �
;

LBC3 u3;1½ � ¼ RHS O 2ð Þ
BC3

� �
;

ð12Þ
Order e3
�I22D
2
0 u2;2½ � þ G23D0 u3;2½ � þ L22 u2;2½ � ¼ RHS O 3ð Þ

Eq2

� �
;

�I33D
2
0 u3;2½ � þ G32D0 u2;2½ � þ L33 u3;2½ � ¼ RHS O 3ð Þ

Eq3

� �
;

ð13Þ

�IBC21D
2
0 u2;2½ � þ LBC21 u2;2½ � ¼ RHS O 3ð Þ

BC21

� �
;

LBC22 u2;2½ � ¼ RHS O 3ð Þ
BC22

� �
;

LBC3 u3;2½ � ¼ RHS O 3ð Þ
BC3

� �
;

ð14Þ
where the expressions of the right-hand side terms are omitted for the sake of brevity and simply named RHS.
The first order problem, i.e. Eqs. (9) and (10), provides the linear free vibrations of the beam and its solution can be writ-

ten in the form
u2;0 ¼ w2;k sð Þ Ak T1; T2ð Þeix2;kT0 þ cc
� �

;

u3;0 ¼ w3;k sð Þ Ak T1; T2ð Þ; eix2;kT0 þ cc
� � ð15Þ
where w2;k and w3;k are the kth lagging and axial mode shapes, respectively, which are determined by employing the Galerkin
discretization approach [25], while Ak T1; T2ð Þ and x2;k are the kth complex amplitude and lagging-axial natural frequency,
respectively. Finally, i is the imaginary unit and cc stands for complex conjugate.

The first order solution is then substituted into the right-hand side of the e2 problem, i.e. Eqs. (11) and (12), to calculate
the second order solution. To eliminate terms causing the appearance of secular terms, the following solvability condition is
enforced according to Fredholm’s alternative Theorem:
Z 1

0
w2;k sð Þ � C1;2 s; T1; T2ð Þ þ w3;k sð Þ � C1;3 s; T1; T2ð Þ� �

ds� C1;BC12 T1; T2ð Þ � w2;k 1ð Þ þ C1;BC22 T1; T2ð Þ � w0
2;k 1ð Þ

� C1;BC3 T1; T2ð Þ � w3;k 1ð Þ ¼ 0; ð16Þ

where C1;2 s; T1; T2ð Þ;C1;3 s; T1; T2ð Þ are the coefficients of the terms proportional to eix2;kT0 in the RHS of Eq. (11), while
C1;BC21 T1; T2ð Þ;C1;BC22 T1; T2ð Þ and C1;BC3 T1; T2ð Þ refer to the RHS of Eq. (12). Therefore, the modulation in T1 of the amplitude
Ak T1; T2ð Þ is provided by the equation
2 ix2;kn1a12 � 2ix2;kn2 � kn3a12
� �

a12
þ 2ix2;kn4 þ 2kn3 � iC1

	 

D1Ak T1; T2ð Þ ¼ 0 ð17Þ
where C1 ¼ �2 w0
2;kjs¼1

� �
x2;kw2;kjs¼1=a12 and the ni coefficients are reported in Appendix C. As clear in the modulation equa-

tion, Eq. (17), the complex amplitude Ak does not depend on T1, that is, Ak T1; T2ð Þ ¼ Ak T2ð Þ. Therefore, the particular solution
of the second order problem can be written as
u2;1 s; T0; T1; T2ð Þ ¼ h21 sð ÞAk T2ð ÞAk T2ð Þ þ h22;R sð Þe2ix2;kT0Ak T2ð Þ2 þ ih22;i sð Þe2ix2;kT0Ak T2ð Þ2 þ cc

u3;1 s; T0; T1; T2ð Þ ¼ h31 sð ÞAk T2ð ÞAk T2ð Þ þ h32;R sð Þe2ix2;kT0Ak T2ð Þ2 þ ih32;i sð Þe2ix2;kT0Ak T2ð Þ2 þ cc
ð18Þ
where h22;R sð Þ;h32;i sð Þ;h32;R sð Þ;h22;i sð Þ;h21 sð Þ and h31 sð Þ are functions of the space coordinate s and are calculated by solving, by
means of the Galerkin approach, the following ordinary differential equations
k2h22;R � 3a22 m0inv
00� �
m0invh

00
22;R=a12 � a22 m0inv

0� �
m0inv

00� �
h0
22;R=a12 � 2a22 m0inv

0� �2
h00
22;R=a12 � a22m0 2

invh
0000
22;R=a12

þ 4h22;Rx2
2;k þ a22 N0

0

� �
m0invh

0
22;R þ a22N0m0invh

00
22;R þ a22N0 m0inv

0� �
h0
22;R � 8 m0inv

0� �
m0invh

0
22;Rx

2
2;k=a12

� 4a22 m0inv
0� �
m0invh

000
22;R=a12 � a22 m0inv

000� �
m0invh

0
22;R=a12 � 4m0 2

invh
00
22;Rx

2
2;k=a12 � 4kh32;ix2;k

¼ f 22R32i; ð19Þ
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h32;ik
2 � 4h22;Rkx2;k þ 4h32;ix2

2;k þ h00
32;ia22 ¼ 0; ð20Þ

k2h22;i � 4a22 m0inv
0� �
m0invh

000
22;i=a12 � a22 m0inv

0� �
m0inv

00� �
h0
22;i=a12 � 2a22 m0inv

0� �2
h00
22;i=a12 � a22m0 2

invh
0000
22;i=a12

� 4m0 2
invh

00
22;ix

2
2;k=a12 � a22 m0inv

000� �
m0invh

0
22;i=a12 þ 4h22;ix2

2;k � 3a22 m0inv
00� �
m0invh

00
22;i=a12 � 8 m0inv

0� �
m0invh

0
22;ix

2
2;k=a12

þ a22N0m0invh
00
22;i þ a22N0 m0inv

0� �
h0
22;i þ a22 N0

0

� �
m0invh

0
22;i þ 4kh32;Rx2;k ¼ 0; ð21Þ

k2h32;R þ 4h22;ikx2;k þ 4h32;Rx2
2;k þ h00

32;Ra22 ¼ f 32R22i sð Þ; ð22Þ

k2h21 � a22m0 2
invh

0000
21=a12 � 2a22 m0inv

0� �2
h00
21=a12 � a22 m0inv

000� �
m0invh

0
21=a12 � 4a22 m0inv

0� �
m0invh

000
21=a12

� 3a22 m0inv
00� �
m0invh

00
21=a12 � a22 m0inv

0� �
m0inv

00� �
h0
21=a12 þ a22 N0

0

� �
m0invh

0
21 þ a22N0m0invh

00
21 þ a22N0 m0inv

0� �
h0
21 ¼ f 21 sð Þ;

ð23Þ

k2h31 þ a22h
00
31 ¼ f 31 sð Þ; ð24Þ
where all the right-hand side is omitted for the sake of brevity.
By now substituting the expressions of the first- and second-order solutions into the third-order problem (i.e., Eq. (13)),

eliminating terms causing the appearance of secular terms delivers the following modulation equation in time T2
2ix2;kC1;kD2Ak T2ð Þ þ iC2;k;i þ C2;k;R
� �

Ak T2ð ÞAk T2ð Þ2 ¼ 0; ð25Þ

where the coefficients C are defined in Appendix 4. The time rate-of-change of the complex amplitude Ak T2ð Þ can be then
written as
D2Ak T2ð Þ ¼ ick;i þ ck;R
� �

Ak T2ð ÞAk T2ð Þ2; ð26Þ
where the expressions of the coefficients c are reported in Appendix 4.
By introducing the polar form of the kth amplitude as Ak T2ð Þ ¼ 1

2 ak T2ð Þeibk T2ð Þ, where ak T2ð Þ and bk T2ð Þ are the real ampli-
tude and the phase, respectively, and substituting it into the modulation equation, separating real and imaginary parts yield
D2ak T2ð Þ ¼ 0;

ak T2ð ÞD2bk T2ð Þ ¼ 1
4 ak T2ð Þ3ck;i;

ð27Þ
where ck;i � ck is the so-called the effective nonlinearity coefficient which characterize the type of nonlinearity of each mode.

Therefore, the solution of Eq. (27) reads ak T2ð Þ ¼ a0
k and bk T2ð Þ ¼ 1

4 a
0 2
k ckT2 þ b0

k , where a0
k and b0

k are defined through the ini-
tial conditions.

The solution, up to the second-order approximation, can be the written as
u2 ¼ w2;k sð Þa0k cos xNL
2;kt þ b0

k

� �
þ 1

2h21 sð Þa0 2
k þ 1

2h22;R sð Þa0 2
k cos 2xNL

2;kt þ 2b0
k

� �
� 1

2h22;i sð Þa0 2
k sin 2xNL

2;kt þ 2b0
k

� �
;

u3 ¼ w3;k sð Þa0k cos xNL
2;kt þ b0

k

� �
þ 1

2h31 sð Þa0 2
k þ 1

2h32;R sð Þa0 2
k cos 2xNL

2;kt þ 2b0
k

� �
� 1

2h32;i sð Þa0 2
k sin 2xNL

2;kt þ 2b0
k

� �
;

ð28Þ

where xNL

2;k ¼ x2;k þ 1
4 a

0 2
k ck is the kth lagging-axial nonlinear frequency and the parameter ck is the nonlinearity coefficient.

4. Principal parametric resonance

Principal parametric resonance may occur when the beam angular velocity is modulated in time by a small, harmonic
oscillation and the frequency of the oscillation is twice one of the natural frequency of the beam [26]. Therefore, to study
the above mentioned phenomenon, the rotational speed k is assumed to have the following expression:
k tð Þ ¼ k 1þ d cos Xtð Þð Þ, where d and X are the amplitude and frequency, respectively, of the parametric excitation. Moreover,
the frequency of the oscillating part of k is expressed as X ¼ 2x2;k þ e2r, where r is the detuning parameter. The linear
damping forces are introduced through the classical Rayleigh formulation in the form �2f2x2;k@tu2 s; tð Þ and
�2f3x2;k@tu3 s; tð Þ. For the case of weak damping, the dissipative terms can be then rescaled so as to be proportional to e2,
furthermore, also the effects due to the excitation provided by the periodic part d of the angular speed can be assumed to
be of higher order and, then, rescaled as d ¼ e2d.
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The same asymptotic procedure discussed in Section 3 is adopted to study the principal parametric resonance. Although,
since the dissipative terms and the modulation of the angular speed are assumed as proportional to e2, their contribution
appears only at the order e3 of the asymptotic expansion, therefore, it turns out that the solutions of the first and the second
perturbation corresponds to those found in Section 3, i.e., Eqs. (15) and (18). By substituting the latter into the third-order
problem of the parametric excitation case, eliminating terms causing the appearance of secular terms delivers the following
modulation equation in time T2
2ix2;kC1;kA
0
k T2ð Þ þ iC2;k;i þ C2;k;R

� �
Ak T2ð ÞAk T2ð Þ2 þ 2k2dC3;kAk T2ð ÞeirT2 þ 2if2;kx2

2;kAk T2ð Þ ¼ 0; ð29Þ

where the prime, here and henceforth, will be adopted to indicate differentiation with respect to time T2 and the expressions
of parameters C are given in Appendix 4. The time rate-of-change of the complex amplitude Ak T2ð Þ can be then written as
A0
k T2ð Þ ¼ ick;i þ ck;R

� �
Ak T2ð ÞAk T2ð Þ2 þ ic1;kAk T2ð ÞeirT2 þ c2;kAk T2ð Þ; ð30Þ
where coefficients c are reported in Appendix 4.
By substituting the polar form of the kth amplitude Ak T2ð Þ ¼ 1=2ð Þak T2ð Þeibk T2ð Þ, into the modulation equation Eq. (30), sep-

arating real and imaginary parts yield and introducing the relative phase hk T2ð Þ ¼ rT2 � 2bk T2ð Þ, the equations governing the
time evolution of the real amplitude and the relative phase can be written as
a0k T2ð Þ ¼ 1
4 ak T2ð Þ3ck;R � ak T2ð Þ sin hk T2ð Þð Þc1;k þ c2;kak T2ð Þ;

ak T2ð Þh0k T2ð Þ ¼ � 1
2 ak T2ð Þ3ck;i � 2ak T2ð Þc1;k cos hk T2ð Þð Þ þ ak T2ð Þ:

ð31Þ
4.1. Stability analysis

Modulation equations reported in Eq. (31) have both trivial and nontrivial solutions which must be calculated separately.
The stability of the nontrivial steady state solution of the amplitude and phase modulation equations is studied through the
eigenvalues of the Jacobian of Eq. (31) which leads to the following characteristic equation:
k2 þ �a2kck;R � 2c2;k
� �

k� 1
2
a2kck;irþ 1

4
a4kc

2
k;R þ a2kc2;kck;R þ

1
4
a4
kc

2
k;i ¼ 0: ð32Þ
Following the Routh-Hurwitz stability criterion, the subsequent relations must be satisfied to ensure the stability of the
steady state solution:
�a2kck;R � 2c2;k > 0

� 1
2 a

2
kck;irþ 1

4 a
4
kc

2
k;R þ a2kc2;kck;R þ 1

4 a
4
kc

2
k;i > 0

ð33Þ
To study the stability of the trivial solution, the Cartesian form of the amplitude, i.e. Ak T2ð Þ ¼ pk T2ð Þ þ iqk T2ð Þð Þe1
2irT2 , is

substituted into Eq. (30), so as to obtain the following equations
p0
k T2ð Þ ¼ ck;Rp T2ð Þ3 � ck;ip T2ð Þ2q T2ð Þ þ ck;Rq T2ð Þ2 þ c2;k

� �
p T2ð Þ � ck;iq T2ð Þ3 þ 1

2
rþ c1;k

� �
q T2ð Þ; ð34Þ

q0
k T2ð Þ ¼ ck;ip T2ð Þ3 þ ck;Rp T2ð Þ2q T2ð Þ þ ck;iq T2ð Þ2 � 1

2
rþ c1;k

� �
p T2ð Þ þ ck;Rq T2ð Þ3 þ c2;kq T2ð Þ; ð35Þ
and the characteristic equation derived from the Jacobian reads
k2 � 2kc2;k þ
1
4
r2 þ c22;k � c21;k ¼ 0: ð36Þ
Finally, the Routh-Hurwitz stability criterion yields
�2c2;k > 0;
1
4r

2 þ c22;k � c21;k > 0:
ð37Þ
By substituting the first- and second-order solutions provided by Eqs. (15) and (18) into the asymptotic expansion of the
beam displacements and by letting e ¼ 1, the second order form of the lagging and axial displacements can be written as
u2 ¼ w2;k sð Þak tð Þ cos bk tð Þ þx2;kt
� �þ 1

2h21 sð Þak tð Þ2 þ 1
2h22;R sð Þak tð Þ2 cos 2x2;kt þ 2bk tð Þ� �

� 1
2h22;i sð Þak tð Þ2 sin 2x2;kt þ O e3

� �
; u3 ¼ w3;k sð Þak tð Þ cos bk tð Þ þx2;kt

� �þ 1
2h31 sð Þak tð Þ2

�

þ 1
2h32;R sð Þak tð Þ2 cos 2x2;kt þ 2bk tð Þ� �� 1

2h32;i sð Þak tð Þ2 sin 2x2;kt þ 2bk tð Þ� �þ O e3
� �

:

ð38Þ
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5. Numerical simulations via Newmark-b method

In this section, the Newmark-b method [27] is implemented so as to calculate the dynamic response of the rotating beam
undergoing principal parametric resonance via direct time integration of the linearized form of the equations of motion dis-
cretized via Galerkin approach [25]. In particular, this discretization procedure is applied to the lagging-axial equations so as
to obtain the following discrete form of the equations of motion
Table 1
Geomet

Mass
(kg/m

10
M2;2€q2;k tð Þ þ C2;3 _q3;k tð Þ þ K2;2q2;k tð Þ þ K2;3q3;k tð Þ ¼ 0;
M3;3€q3;k tð Þ þ C3;2 _q2;k tð Þ þ K3;3q3;k tð Þ þ K3;2q2;k tð Þ ¼ 0;

ð39Þ
where, q2;k tð Þ and q3;k tð Þ are the kth lagging and axial generalized coordinates, respectively, while
M2;2 ¼ a12n1 � n5 � 2n6ð Þ=a12 C2;3 ¼ C2;3;cons þ C2;3;cos cos Xtð Þ
K2;2 ¼ K2;2;cons þ K2;2;cos cos Xtð Þ þ K2;2;cos2 cos Xtð Þ2 K2;3 ¼ n3kdX sin Xtð Þ; ð40Þ
and
M3;3 ¼ n4 C3;2 ¼ C3;2;cons þ C3;2;cos cos Xtð Þ K3;2 ¼ �n3kdX sin Xtð Þ
K3;3 ¼ K3;3;cons þ K3;3;cos cos Xtð Þ þ K2;2;cos2 cos Xtð Þ2; ð41Þ
where the expressions of coefficients Ci;j;cons;Ci;j;cos;Ki;j;cons;Ki;j;cos;Ki;j;cos2 and Ki;j;sin are given in Appendix 5. Hence, the lagging-
axial equations can be reorganized in matrix form as:
M€qþ C _qþ Kq ¼ 0 ð42Þ

where the mass M, the Coriolis C and the stiffness K matrices are
M ¼ M2;2 0
0 M3;3

	 

; C ¼ 0 C2;3

C3;2 0

	 

; K ¼ K2;2 K2;3

K3;2 K3;3

	 

; ð43Þ
respectively.
The Newmark-b method [27] is then applied to Eq. (42) to evaluate the acceleration, the velocity and displacement vec-

tors, respectively, at the nþ 1th calculation step as
€qnþ1 ¼ � ~M�1 �M€qn þ �C _qn þ �Kqn
� �

_qnþ1 ¼ _qn þ 1� cð Þh€qn þ ch€qnþ1

qnþ1 ¼ qn þ h _qn þ 1=2� bð Þh2€qn þ bh2€qnþ1

ð44Þ
where
M
�
¼ Mþ Cchþ Kbh2

; �M ¼ C 1� cð Þhþ K 1=2� bð Þh2
; �C ¼ Cþ Kh; �K ¼ K ð45Þ
where b ¼ 1=6; c ¼ 1=2 and h is the time step.
Once the solution of (42) is found, it is then possible to calculate the time history of the generalized coordinates. For a

selected detuning parameter r, the amplitude d of the parametric excitation is varied continuously until the time history
shifts its behaviour from stable to unstable. The value of d leading the system to the instability signals the boundary of
the parametric resonance region for the lagging/axial motions of the rotating beam.

6. Results and discussions

6.1. Nonlinear free vibrations analysis

In this section, numerical simulations aimed at determining the nonlinear free vibrations of the rotating beam are pre-
sented. To this aim, an isotropic beam possessing the geometrical and mechanical properties given in Table 1 is considered.

Moreover, further studies are carried out by comparing the results in terms of effective nonlinearity coefficient and prin-
cipal parametric resonance response so as to illustrate the importance of the exact geometrical formulation (EGF) against ad
hoc beam theories such as the Euler-Bernoulli beam model including von-Karman strain-displacement relation (EBVK).
rical and mechanical properties from Refs. [7,16].

per unit length Axial stiffness Flexural stiffness Length Rotor radius Angular speed
) (N) (N m2) (m) (m) (rad/s)

2:23� 108 3:99� 105 9 0.5 30



Table 2
The lagging and axial frequencies (rad/s) in comparison with those reported in [7] at rotation speed xR ¼ 0.

Natural frequencies 1st Lagging 2nd Lagging 3rd Lagging 4th Lagging 1st Axial 2nd Axial

Ref. [7] results 8.672 54.35 152.2 298.2 824.7 2474.0
Current results 8.671 54.330 152.071 297.825 824.195 2472.584

Fig. 2. Frequency loci of the lagging and axial modes: first axial mode (thin line), first lagging mode (thick line), second lagging mode (dashed-line), third
lagging mode (dotted-line), and fifth lagging mode (dotted-dashed-line). Filled circles indicate the modes having frequency twice the corresponding mode.

Table 3
The effective nonlinearity coefficient, Ck;k ¼ 4x0ck , for the first three lagging modes in comparison with those of Ref. [16]
at rotation speed xR ¼ 0.

C1;1 C2;2 C3;3

Ref. [16] results �619690 18548339 63563664
Current results �630380 18218000 61543000
Difference error percent 1.72 1.78 3.18
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As mentioned above, the mechanical parameters adopted for the case-study beam and reported in Table 1 were taken
from the literature, although, the mechanical model proposed in [7,16] only accounted for the flapping motion of the blade
while the lagging motion was neglected. The lowest four lagging natural frequencies and the lowest two axial natural fre-
quencies are compared in Table 2 with those reported in [7].

The results of the asymptotic analysis in terms of effective nonlinearity coefficients for the lowest three lagging modes are
validated through a comparison, shown in Table 3, with the results reported in [16] for the case of stationary beam. Because
of the different nondimensionalization procedure between the current paper and Ref. [16] and the different definition of the
effective nonlinearity coefficient, to compare the analogous quantities the current results must be re-calculated as
Ck;k ¼ 4x0ck.

After validation of the current results, a comprehensive study on the effects of the angular speed on the effective nonlin-
earity coefficients is investigated next. The considered beam [15] is isotropic and has a rectangular cross-section. The rotor
radius, the beam width, the beam thickness and the beam length are 0:2 m, 0:05 m, 0:005 m, and 2 m, respectively. The
mechanical properties are E ¼ 70 GPa, G ¼ 26 GPa, and the mass density is q ¼ 2700 kg/m3. The variation with the of the
lowest natural frequency of the lagging and axial modes are depicted in Fig. 2. This figure shows the 1 : 1 and 2 : 1 internal
resonance possibilities between the lagging and axial modes.

It is evident that a 1 : 1 internal resonance can exist at a rotational speed of 1940 rpm between the first axial mode and
the fifth lagging mode. On the other hand, two 2 : 1 internal resonances between the second and third lagging modes at a
rotational speed of 3016 rpm and between the third lagging mode and the first axial mode at 3757 rpm also exist.

The corresponding effective nonlinearity coefficient c1 for the first lagging mode is depicted in Fig. 3-(a). In particular,
solid lines refer to the results obtained using the EGF model, while filled circles indicate the results of the EBVK models.
It is clear that for a stationary beam, i.e., when xR ¼ 0, a softening behaviour is predicted for the first lagging mode. It is



Fig. 3. The effective nonlinearity for (a)- the first, (b)- the second and (c)- the third lagging modes: On the basis of the exact geometrical formulation (solid-
lines) vs. those of Euler-Bernoulli beam theory (filled circles).

Table 4
The prediction of the first three lagging effective nonlinearities based on the EGF model versus the EBVK model.

EGF EBVK Difference %

0 rpm 3000 rpm 5000 rpm 0 rpm 3000 rpm 5000 rpm 0 rpm 3000 rpm 5000 rpm
c1 �266891.0 �12577.7 5493.0 �266724.2 �16464.7 �1069.7 0.1 30.9 119.5
c2 8072985.7 5680813.0 3195947.1 8105767.6 5215420.7 3418463.5 0.4 8.2 7.0
c3 30554094.5 39279895.7 6103294.1 30828726.8 40820985.2 7059566.5 0.9 3.9 15.7
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worth to note that the results obtained by means of the EGF model show that the rotating beam starts with a sharp softening
nonlinearity and then it moves to a hardening nonlinearity, conversely, the EBVK model predicts invariant softening nonlin-
earity. On the other hand, for higher rotational speed the difference between the results obtained via EGF and EBVK models
increases considerably.

The effective nonlinearity coefficient c2 of the second lagging mode is shown in Fig. 3-(b). A hardening nonlinearity is pre-
dicted for the second lagging mode of the stationary beam. As mentioned before, 2 : 1 internal resonance occurs between the
second and the third lagging modes at 3016 rpm causing a singularity in the solution. It is obvious that the nonlinearity type
does not change around the singularity and, therefore, a hardening type of nonlinearity is predicted for this mode all over the
investigated range of angular speeds.

Finally, the effective nonlinearity coefficient c3 of the third lagging mode is presented in Fig. 3-(c). The third lagging mode
displays a hardening treatment for the stationary beams. The 2 : 1 internal resonances between the third lagging and first
axial mode at 3757 rpm is evident. However, a change in the nonlinearity type around the singularity point is predicted
for this mode. Except this change in the nonlinearity type around this speed, the beam shows a hardening type of nonlin-
earity at whole of the rotation speed range.



Fig. 4. The effective nonlinearity for (a)- the first and (b)- the second axial modes.

Fig. 5. The principal parametric resonance stability region boundaries for (a)- the first and (b)- the second, axial modes: Current MMS results (solid-lines)
vs. those of Ref. [21] (dashed-lines).
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The comparative analysis performed to highlight the difference between the results of the here proposed EGF model and
the EBVKmodel, showed that the two modeling approach deliver results which differ drastically for higher rotational speeds.
This discrepancy is more evident for the first and the second lagging modes, see Table 4. Moreover, although the comparison
was performed for symmetric beams, the discrepancy found between the aforementioned theories is expected to grow for
non-symmetric beams since the lagging deformation arises in the prestressed configuration and at moderate-to-high speeds,
the chord-wise deformation gets larger. Within this context, the Euler-Bernoulli beam model cannot predict the correct
deformation. Consequently, the linear free vibration features and the nonlinear properties suffer further discrepancies.

The nonlinear dynamic response of the lowest two axial modes is studied next. The effective nonlinearity coefficient of
the first axial mode, i.e., c1, is shown in Fig. 4-(a). The figure shows that stationary beams do not show any nonlinearity for
the axial modes. As a result of 1 : 1 internal resonances between the first axial mode and fifth lagging mode, a singularity
occurs at 1940 rpm. Although for stationary beams none nonlinear behavior is predicted, on the other hand, for rotating
beams a hardening type of nonlinearity is evident and the singularity does not change the type of nonlinearity.

The variation of the effective nonlinearity coefficient c2 of the second axial mode is illustrated in Fig. 4-(b). The same qual-
itative results get for the first axial mode are also obtained for the second. However, no singularity arises for this mode.
6.2. Principal parametric resonance analysis

To show the validity of the proposed solution method in the prediction of the dynamic response of the rotating beam
undergoing principal parametric resonance, some numerical results are shown and compared with those obtained in [21].
The parametric excitation frequency is assumed to be twice the axial frequency, i.e., X ¼ 2x3;k þ e2r. According to the data
reported in [21], the beam rotates at 1500 rpm, is made of Aluminium, and the geometric and mechanical parameters are:
E ¼ 70 GPað Þ; G ¼ 26 GPað Þ; q ¼ 2700; d3 ¼ 0:5 mð Þ; L ¼ 5 mð Þ; b ¼ 0:05 mð Þ and h ¼ 0:005 mð Þ. The stability regions of the
principal parametric resonance are calculated for the first and second axial modes, respectively, and are shown in Fig. 5



Fig. 6. The principal parametric resonance stability region boundaries for the first lagging mode: Current MMS results (solid-lines) vs. those of Newmark
method (filled circles).
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where a comparison with the results obtained in [21] is also proposed. It is worth noting that, although in [21] the coupling
of the lagging-axial motions was not considered, nevertheless, the results obtained in this work show the reliability of the
here proposed method.

The MMS vs. the Newmark approach. Further validation of the semi-analytical results obtained via MMS in the study of
the parametric resonance of rotating beams is proposed by implementing Newmark method to solve numerically the equa-
tions of motion. Henceforth, the mechanical parameters presented in the previous section are considered. The beam rota-
tional speed is 1000 rpm. In this case, the parametric excitation frequency is assumed to be X ¼ 2x2;1 þ er and the
stability region is depicted in Fig. 6. The results demonstrated the validity of the current MMS. The discrepancy between
the results is due to the more precise results of numerical techniques. Although the numerical outcome is more precise,
for all points in this diagram numerous iterations are required i.e. the time history obtained by the Newmark method for
any specific value of detuning parameter is analyzed by perturbing the parametric excitation amplitude d until the time his-
tory response becomes unstable and the value of d is stored as the threshold value for the instability region. The operation is
then repeated in the selected range of detuning parameter r.

After validation of the MMS results, principal parametric resonance for the lagging-axial motions is investigated next.
The effect of the structural damping for three different values of the damping ratio for the first lagging mode and the first

axial mode is shown in Fig. 7. In the simulations performed f2 ¼ f3. The results show that, as expected, by increasing the
damping ratio the minimum value of the excitation amplitude d, necessary to activate the parametric resonance, increases
with the damping.

The effect of the angular speed in the stability region of the principal parametric resonance for the first lagging and axial
modes is shown in Fig. 8. It can be seen that, by increasing the rotating speed the instability region is broadening.

The stability regions for the first and second lagging modes calculated by adopting the EGF model and EBVK model,
respectively, are depicted in Fig. 9 for two different rotational speeds. It can be seen that, in agreement with Table 4, the role
Fig. 7. The principal parametric resonance stability region boundaries for the (a)- first lagging modes: f2 ¼ 0 (solid-lines), f2 ¼ 0:0316 (dashed-lines) and
f2 ¼ 0:0684 (dotted-lines) and (b)- first axial mode: f2 ¼ 0 (solid-lines), f2 ¼ 1:6064� 10�5 (dashed-lines) and f2 ¼ 3:2128� 10�5 (dotted-lines).



Fig. 8. The principal parametric resonance stability region boundaries for the first (a)-lagging and (b)-axial modes: 1000 rpm (solid-lines) vs. 3000 rpm
(dashed-lines).

Fig. 9. The principal parametric resonance stability region boundaries for the (a)-first and (b)-second lagging modes: 3000 rpm (thin-lines) vs. 5000 rpm
(thick-lines).
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of the implemented model is more highlighted in determining the first lagging mode instability region boundary rather than
the second one especially at high speeds. Moreover, the model based on the exact geometrical formulation determines a
wider instability region comparing with the Euler-Bernoulli beam model.

Sensitivity to rotational speed. The instability region boundary sensitivity to the rotation speed is studied next. In this
study, the rotational speed is varied from 0 to 5000 rpm and the parametric excitation amplitude d is set to 0:1. Beside the
variation of the natural frequencies in each rotating speed, the detuning parameter is also varying. The parametric excitation
frequency is set to be X ¼ 2xk þ r for a selected rotational speed.

The boundaries of the instability region for the lowest three lagging modes is shown in Fig. 10 in terms of the rotational
speed. In the abscissa is reported the nondimensional parametric excitation frequency X. The figure shows that, by increas-
ing the rotational speed, the instability region of the parametric resonance becomes wider. On the other hand, the instability
region of the lowest modes is broader than that of the higher modes.

A similar analysis has been conducted for the lowest two axial modes and the results presented in Fig. 11.
Post-critical response. The post-critical response of the lagging-axial modes undergoing parametric response is exam-

ined in this section for d ¼ 0:1. The influence of the structural damping on the parametric resonance of the first lagging mode
and first axial mode, respectively, is shown in Fig. 12 for a rotational speed of 1000 rpm. By varying the detuning parameter
from left to right a subcritical pitchfork bifurcation occurs for the first lagging mode which the stable trivial solution coexists
with an unstable periodic solution (see Fig. 12(a)). Thereafter, by increasing the detuning parameter r, the subcritical pitch-
fork bifurcation is followed by a supercritical pitchfork bifurcation and so the stable trivial solution turns into an unstable
solution while another periodic solution is born which is stable and attracts the beam dynamics. On the other hand, Fig. 12
(b) shows an hardening behaviour of the first axial mode. The softening and hardening behaviours of the studied modes are
in agreement with the presented results in the previous section.

The influence of the rotational speed in the parametric resonance of the lowest three lagging modes and two axial modes,
respectively, are depicted in Figs. 13 and 14. It is clear that the instability region is wider for the higher rotational speeds. On
the other hand, according to the results in terms of the effective nonlinearity coefficients presented in the previous section,



Fig. 10. The principal parametric resonance stability region boundaries for the (a)- first and (b)- first three lagging modes in terms of the rotating speed and
the dimensionless parametric excitation frequency.

Fig. 11. The principal parametric resonance stability region boundaries for the (a)- first and (b)- second axial modes in terms of the rotating speed and the
dimensionless parametric excitation frequency.

Fig. 12. The parametric resonance response for the first (a)- lagging mode: f2 ¼ 0 (thick-lines) and f2 ¼ 0:0684 (thin-lines) and (b)- axial mode: f2 ¼ 0
(thick-lines) and f2 ¼ 3:2128� 10�5 (thin-lines).
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the type of nonlinearity is invariant for the lowest three lagging modes and two axial modes when the beam rotates at
1000 rpm and 3000 rpm, respectively.

The importance of the employed beam theory on the principal parametric resonance response for the first and second
lagging modes is shown in Fig. 15. It is to be noted that only the right branch of the response is shown. The results highlight
the importance of the implemented theory with respect to rotation speed increments especially for the first lagging mode.
Moreover, a qualitative difference is also observed in the principal parametric resonance treatment of the first lagging mode
at 5000 rpm. In other words, although the result on the basis of the EGF predicts a stable trivial solution with one stable and
one unstable periodic solutions with the increase of detuning parameter, considering the whole treatment including the left
and the right branches in mind, the EBVK predicts a softening nonlinearity. Accordingly, the latter anticipates one stable triv-
ial solution with the increase of detuning parameter.



Fig. 13. Parametric resonance response for the (a)-first, (b)-second and (c)-third lagging modes: 1000 rpm (thin-lines) vs. 3000 rpm (thick-lines).

Fig. 14. Parametric resonance response for the (a)-first and (b)-second axial modes: 1000 rpm (thin-lines) vs. 3000 rpm (thick-lines).
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7. Conclusions

In this paper, lagging-axial nonlinear free vibrations and principal parametric resonances are examined in the presence of
Coriolis forces in the context of a geometrically exact rotating beam formulation. The direct method of multiple scale was
implemented to deliver the effective nonlinearity coefficients of various modes, the transition curves (i.e., the parametric
instability regions boundaries) and the parametric resonance motion treatment. Comparisons in terms of effective nonlin-
earity coefficient and principal parametric resonance response were carried out so as to illustrate the importance of the exact
geometrical formulation against ad hoc beam theories such as the Euler-Bernoulli beam model. A comprehensive study was
carried out to show the change in nonlinearity suffered by lagging-axial modes upon angular speed variations. In addition,
the nonlinear parametric resonance behaviour and the stability region boundaries were examined in terms of the rotation



Fig. 15. Parametric resonance response for the first lagging mode: (a)- 1000 rpm (thin-lines) vs. 3000 rpm (thick-lines) and (b)- 5000 rpm and the second
lagging mode: (c)-1000 rpm (thin-lines) vs. 3000 rpm (thick-lines) and (d)-3000 rpm (thin-lines) vs. 5000 rpm (thick-lines). (EGF-based on the exact
geometrical formulation; EBVK-based on the Euler-Bernoulli beam assumption.).
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speed and the damping ratio. In the context of nonlinear free vibrations, the results led to the following highlights: first, the
axial modes do not show any type of nonlinearity for the stationary beams but, for the rotating beams due to the Coriolis
forces induced coupling, a hardening nonlinearity is manifested. Second, 1 : 1 internal resonances between the lagging
and axial modes and 2 : 1 internal resonances between the lagging modes do not change the type of nonlinearity around
the singularity caused in the effective nonlinearity coefficient. However, but 2 : 1 resonances between the lagging and axial
modes can shift the type of nonlinearity around it. Third, a softening-hardening nonlinearity is predicted for the first lagging
mode while a hardening nonlinearity is computed for the second and third lagging modes (except in the vicinity of the sin-
gularity). Moreover, the Euler-Bernoulli beam model fails to predict the precise effective nonlinearity especially for the first
lagging mode for moderate-to-high rotating speeds and for some rotation speeds the softening/hardening type of nonlinear-
ity was predicted erroneously.

On the other hand, in the context of the parametric resonances, the main findings can be summarized as follows. (i) When
the lagging and axial modes undergo parametric resonances, the range of the associated instability regions, in terms of
detuning parameter, decreases with the mode number. (ii) The instability region when the lagging modes are excited is more
flattened than that of the axial modes. (iii) The study into the full onset of parametric resonance motions reveals that when
the lagging and axial modes are subject to a parametric resonance excitation the loss of stability of the trivial solution gives
rise to the onset of period doubled oscillations governed by a nonlinear frequency response exhibiting the same type of non-
linearity of the involved mode. (iv) The difference between the results predicted in terms of the implemented beam theory is
manifested by the increment of the rotation speed and is higher for the first lagging mode. Also, the instability region pre-
dicted resorting the Euler-Bernoulli beam assumption is narrower than the associated one defined by the exact geometrical
formulation. In addition, a qualitatively wrong parametric resonance response is determined by the Euler-Bernoulli beam
model.
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Appendix A. The linear inertia, gyroscopic and stiffness operators
I22 ¼ � �ð Þ þ m0inv sð Þ2@ss �ð Þ=a12 þ 2m0inv 0 sð Þ@s �ð Þm0inv sð Þ=a12; I23 ¼ 0; G22 ¼ 0; G23 ¼ 2k �ð Þ
L22 ¼ k2 �ð Þ � a22@s �ð Þm0inv

000 sð Þm0inv sð Þ=a12 þ a22@ss �ð ÞN0 sð Þm0inv sð Þ � 2a22m0inv 0 sð Þ2@ss �ð Þ=a12

�4a22m0inv 0 sð Þ@sss �ð Þm0inv sð Þ=a12 þ a22@s �ð ÞN00 sð Þm0inv sð Þ þ a22@s �ð ÞN0 sð Þm0inv 0 sð Þ
�a22m0inv 0 sð Þ@s �ð Þm0inv 00 sð Þ=a12 � 3a22@ss �ð Þm0inv 00 sð Þm0inv sð Þ=a12 � a22m0inv sð Þ2@ssss �ð Þ=a12; L23 ¼ _k �ð Þ

ð46Þ
I33 ¼ � �ð Þ; I32 ¼ 0; G32 ¼ �2k �ð Þ; G33 ¼ 0; L32 ¼ � _k �ð Þ; L33 ¼ a22@ss �ð Þ þ k2 �ð Þ ð47Þ

IBC21 ¼ @s �ð Þ=a12; LBC21 ¼ �a22@sss �ð Þ=a12 � a22@s �ð Þm0inv
00
=a12 � 2a22@ss �ð Þm0inv

0
=a12

LBC22 ¼ �a22@s �ð Þm0inv
0
=a12 � a22@ss �ð Þ=a12

LBC3 ¼ a22@s �ð Þ
ð48Þ
Appendix B. Quadratic inertia and stiffness operators
i 2ð Þ
21 ¼ �2m0inv sð Þ3@tsu2@tssu3=a12 � 2m0inv sð Þ3@tssu2@tsu3=a12 � 6m0inv sð Þ2m0inv 0 sð Þ@tsu2@tsu3=a12 ð49Þ

i 2ð Þ
22 ¼ �2m0inv sð Þ3@su3@ttssu2=a12 � m0inv sð Þ3@ssu2@ttsu3=a12 � m0inv sð Þ3@su2@ttssu3=a12

�2m0inv sð Þ3@ssu3@ttsu2=a12 � 6m0inv sð Þ2@su3m0inv 0 sð Þ@ttsu2=a12 � 3m0inv sð Þ2m0inv 0 sð Þ@su2@ttsu3=a12

ð50Þ

n 2ð Þ
2 ¼ 3a22m0inv sð Þ2@su3@su2m0inv

000 sð Þ=a12 þ 4a22m0inv sð Þ3@ssu3@sssu2=a12

�a22m0inv sð Þ2@su2N
0 sð Þ@ssu3 þ a22m0inv sð Þ3@su2@ssssu3=a12 þ a22m0inv sð Þ@su3@ssu2

þa22m0inv sð Þ@su2@ssu3 þ 2a22m0inv sð Þ3@su3@ssssu2=a12 þ a22@su3@su2m0inv 0 sð Þ
�a22m0inv sð Þ2N00 sð Þ@su3@su2 þ 2a22m0inv 0 sð Þ3@su2@su3=a12 þ 3a22m0inv sð Þ3@ssu2@sssu3=a12

þ10a22m0inv 0 sð Þ@su2@su3m0inv 00 sð Þm0inv sð Þ=a12 þ 7a22m0inv sð Þ2@ssu3@su2m0inv 00 sð Þ=a12

þ7a22m0inv sð Þ2m0inv 0 sð Þ@su2@sssu3=a12 þ 12a22m0inv sð Þ2@su3m0inv 0 sð Þ@sssu2=a12

þ10a22m0inv 0 sð Þ2@su2@ssu3m0inv sð Þ=a12 þ 16a22m0inv sð Þ2@ssu3@ssu2m0inv 0 sð Þ=a12

þ14a22m0inv 0 sð Þ2@ssu2@su3m0inv sð Þ=a12 þ 9a22m0inv sð Þ2@su3@ssu2m0inv 00 sð Þ=a12

�2a22@su2N
0 sð Þ@su3m0inv 0 sð Þm0inv sð Þ � a22m0inv sð Þ2@ssu2N

0 sð Þ@su3

ð51Þ
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i 2ð Þ
31 ¼ 0 ð52Þ

i 2ð Þ
32 ¼ �m0inv sð Þ3@ssu2@ttsu2=a12 � m0inv sð Þ3@su2@ttssu2=a12 � 3m0inv sð Þ2@su2@ttsu2m0inv 0 sð Þ=a12 ð53Þ

n 2ð Þ
3 ¼ �a22m0inv sð Þ2@su2@ssu2 þ a22m0inv sð Þ3@su2@ssssu2=a12 þ a22m0inv sð Þ2@su2

2m0inv
000 sð Þ=a12

�2a22m0inv sð Þ2@ssu2N
0 sð Þ@su2 þ a22m0inv sð Þ3@sssu2@ssu2=a12 þ 2a22m0inv sð Þ2@ssu2

2m0inv 0 sð Þ=a12

þa22m0inv 0 sð Þ@su2
2 þ 2a22m0inv sð Þm0inv 00 sð Þm0inv 0 sð Þ@su2

2=a12 þ 4a22m0inv sð Þ@ssu2m0inv 0 sð Þ2@su2=a12

þ2a22m0inv sð Þ@su2@ssu2 � a22m0inv sð Þ@su2
2m0inv 0 sð Þ � a22m0inv sð Þ2@su2

2N
00 sð Þ

þ4a22m0inv sð Þ2@su2@ssu2m0inv 00 sð Þ=a12 þ 5a22m0inv sð Þ2@su2@sssu2m0inv 0 sð Þ=a12

�2a22m0inv sð Þ@su2
2N

0 sð Þm0inv 0 sð Þ

ð54Þ
n 2ð Þ
BC21 ¼ 2a22@su2m0inv

02
@su3=a12 þ 4a22@su2@ssu3m0inv

0
=a12 þ 2a22@su2@su3m0inv

00
=a12

þ4a22@ssu2@su3m0inv
0
=a12 þ 2a22@ssu2@ssu3=a12 þ a22@su2@sssu3=a12 þ a22@sssu2@su3=a12

i 2ð Þ
BC21;1 ¼ �2@tsu2@tsu3=a12; i 2ð Þ

BC21;2 ¼ �@su2@ttsu3=a12 � @ttsu2@su3=a12

n 2ð Þ
BC22 ¼ 2a22@su2@su3m0inv

0
=a12 þ a22@ssu2@su3=a12 þ a22@su2@ssu3=a12

n 2ð Þ
BC3 ¼ 1=2ð Þa22@su2

2

ð55Þ
Appendix C. Parameters employed in the secular terms and the Galerkin discretization
dk;k ¼
R 1
0 w2;kw2;k þ w3;kw3;k

� �
ds; n1 ¼ R 1

0 w2
2;k

h i
ds;

n2 ¼ R 1
0 w2;km0inv m0inv

0� �
w0

2;k

� �h i
dsþ 1

2

R 1
0 w2;km0 2

inv w00
2;k

� �h i
ds

� �
; n3 ¼ R 1

0 w2;kw3;k

� �
ds;

n4 ¼ R 1
0 w2

3;k

h i
ds; n5 ¼ R 1

0 w2;kw
00
2;km0 2

invds; n6 ¼ R 1
0 w2;km0inv 0m0invw0

2;kds; n7 ¼ R 1
0 w2;km0inv 0m0inv 00w0

2;kds;

n8 ¼ R 1
0 w2;km0inv 02w00

2;kds; n9 ¼ R 1
0 w2;km0inv 0m0invw000

2;kds; n10 ¼ R 1
0 w2;km0invm0inv

000
w0

2;kds;

n11 ¼ R 1
0 w2;km0invm0inv 00w00

2;kds; n12 ¼ R 1
0 w2;km0 2

invw
IVð Þ
2;k ds; n13 ¼ R 1

0 w2;km0inv 0w0
2;kds;

n14 ¼ R 1
0 w2;kw

00
2;kds; n15 ¼ R 1

0 w2;kw
00
2;km0invds; n16 ¼ R 1

0 w3;kw
00
3;kds:

ð56Þ
Appendix D. The parameters employed in the modulation equations of the kth mode
C1;k ¼ n33 þ n221 � 1
2C2=a12 � 2n222=a12; C2;k;i ¼ C2;k;i;x2

2;k
x2

2;k þ C2;k;i;Cons

C2;k;i;x2
2;k

¼ �C4;x2
2;k
=a12 � 5v2d53=a12 � 6v2c39=a12 � 15v2d46=a12 � 5v2d45=a12 � 2v2c55=a12

�2v2c56=a12 � 15v3b56=a12 � 5v3b31=a12 � 5v3b27=a12

ð57Þ
C2;k;R ¼ C2;k;R;x2
2;k
x2

2;k þ C2;k;R;Cons

C2;k;R;x2
2;k

¼ � 1
2 4v2c41 þ 10v2d50 þ 4v2d26 þ 10v2d28 þ 8v2c47 � 40v3a27 þ 8v2c46

�
þ 4v3b71 þ 30v3b33 þ 4v3b78 þ 32v2a3 � 80v2b3 þ 30v2d7 þ 10v3b57 þ 2C3;x2

2;k
þ 24v2c6

þ 12v2b17 � 80v3a7 þ 10v3b40 þ 24v2a5 þ 12v2d5 þ 4v2c59 � 20v2b5 þ 4v2d12 � 20v3a10

�
=a12 ð58Þ
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C3;k ¼ �1
2
n33 �

1
2
n221; f2;k ¼ f2n221 þ f3n33 ð59Þ
where,
C2 ¼ �2 w0
2;kjs¼1

� �
w2;kjs¼1; C4;x2

2;k
¼ � w0

2;kjs¼1

� �
h0
32;ijs¼1

� �
þ h0

22;ijs¼1

� �
w0

3;kjs¼1

� �h i
w2;kjs¼1;

C3;x2
2;k

¼ � w0
2;kjs¼1

� �3
� 3 w0

2;kjs¼1

� �
w0

3;kjs¼1

� �2
þ w0

2;kjs¼1

� �
h0
32;Rjs¼1

� �
þ 2 w0

2;kjs¼1

� �
h0
31js¼1

� �	

þ h0
22;Rjs¼1

� �
w0

3;kjs¼1

� �
þ 2 h0

21js¼1

� �
w0

3;kjs¼1

� �i
w2;kjs¼1;

C4;x2
2;k

¼ � w0
2;kjs¼1

� �
h0
32;ijs¼1

� �
þ h0

22;ijs¼1

� �
w0

3;kjs¼1

� �h i
w2;kjs¼1 ð60Þ
C2;k;i;Cons;C2;k;R;Cons and v’s are omitted due to the brevity.
ck;i ¼
1
2
C2;k;R= x2;kC1;k

� �
; ck;R ¼ �1

2
C2;k;i= x2;kC1;k

� �
; c1;k ¼ k2dC3;k= x2;kC1;k

� �
; c2;k ¼ �f2;kx2;k=C1;k ð61Þ
Appendix E. The employed parameters in the Galerkin discretization
C2;3;cons ¼ �2kn3 C2;3;cos ¼ �2n3kd K2;2;cos2 ¼ �k2d2n1 K2;2;cos ¼ �2k2dn1
K2;2;cons ¼ �k2n1 þ a22n13 � a22n14 þ a22n15 þ a22n7=a12 þ 2a22n8=a12 þ 4a22n9=a12

þa22n10=a12 þ 3a22n11=a12 þ a22n12=a12;C3;2;cons ¼ 2kn3 C3;2;cos ¼ 2n3kd;
K3;3;cons ¼ �k2n4 � a22n16 K3;3;cos2 ¼ �k2d2n4;K3;3;cos ¼ �2k2dn4;

ð62Þ
References

[1] A. Arena, W. Lacarbonara, P. Marzocca, Nonlinear aeroelastic formulation and Postflutter analysis of flexible high-aspect-ratio wings, J. Aircraft 50 (6)
(2013) 1748–1764.

[2] D.H. Hodges, E.H. Dowell, Nonlinear equations of motion for the elastic bending and torsion of twisted nonuniform rotor blades, NASA TN D-7818
(1974).

[3] M.R.M. Crespo da Silva, D.H. Hodges, Nonlinear flexure and torsion of rotating beams with application to helicopter rotor blades-I. Formulation, Vertica
10 (2) (1986) 151–169.

[4] M.R.M. Crespo da Silva, D.H. Hodges, Nonlinear flexure and torsion of rotating beams with application to helicopter rotor blades-II. Response and
stability results, Vertica 10 (2) (1986) 171–186.

[5] D.H. Hodges, A mixed variational formulation based on exact intrinsic equations for dynamics of moving beams, Int. J. Solids Struct. 26 (11) (1990)
1253–1273.

[6] D.H. Hodges, Comment on Flexural behavior of a rotating sandwich tapered beam and on Dynamic analysis for free vibrations of rotating sandwich
tapered beams, AIAA J. 33 (6) (1995) 1168–1170.

[7] E. Pesheck, C. Pierre, S.W. Shaw, Modal reduction of a nonlinear rotating beam through nonlinear normal modes, J. Vib. Acoust. 124 (2002) 229–236.
[8] K.V. Avramov, C. Pierre, N.V. Shyriaieva, Nonlinear equations of flexural-flexural-torsional oscillations of rotating beams with arbitrary cross-section,

Int. Appl. Mech. 44 (5) (2008) 582–589.
[9] C.M. Saravia, S.P. Machado, V.H. Cortínez, Dynamic stability of rotating thin-walled composite beams, Mec. Comput. XXVIII (2009) 3297–3317.
[10] Ö. Turhan, G. Bulut, On nonlinear vibrations of a rotating beam, J. Sound. Vib. 322 (1–2) (2009) 314–335.
[11] J. Valverde, D. García-Vallejo, Stability analysis of a substructured model of the rotating beam, Nonlinear. Dyn. 55 (4) (2009) 355–372.
[12] Y. Qin, Y.H. Li, Influences of hygrothermal environment and installation mode on vibration characteristics of a rotating laminated composite beam,

Mech. Syst. Signal. Process. 91 (2017) 23–40.
[13] A.B. Sabater, J.F. Rhoads, Parametric system identification of resonant micro/nanosystems operating in a nonlinear response regime, Mech. Syst. Signal.

Process. 84 (2017) 241–264.
[14] S. Tresser, I. Bucher, Balancing fast flexible gyroscopic systems at low speed using parametric excitation, Mech. Syst. Signal. Process. 130 (2019) 452–

469.
[15] W. Lacarbonara, H. Arvin, F. Bakhtiari-Nejad, A geometrically exact approach to the overall dynamics of elastic rotating blades – part 1: linear modal

properties, Nonlinear Dyn. 70 (1) (2012) 659–675.
[16] H. Arvin, F. Bakhtiari-Nejad, W. Lacarbonara, A geometrically exact approach to the overall dynamics of elastis rotating blades – part 2: nonlinear

normal modes in flapping, Nonlinear Dyn. 70 (3) (2012) 2279–2301.
[17] H. Arvin, W. Lacarbonara, A fully nonlinear dynamic formulation for rotating composite beams: nonlinear normal modes in flapping, Compos. Struct.

109 (2014) 93–105.
[18] H. Arvin, F. Bakhtiari-Nejad, Nonlinear free vibration analysis of rotating composite Timoshenko beams, Compos. Struct. 96 (2013) 29–43.
[19] T. Liu, W. Zhang, J.J. Mao, Y. Zheng, Nonlinear breathing vibrations of eccentric rotating composite laminated circular cylindrical shell subjected to

temperature, rotating speed and external excitations, Mech. Syst. Signal. Process. 127 (2019) 463–498.
[20] H. Arvin, On parametrically excited vibration and stability of beams with varying rotating speed, Iran. J. Sci. Technol. Trans. Mech. Eng. 43 (2) (2019)

177–185.
[21] H. Arvin, Y.Q. Tang, A. Ahmadi Nadooshan, Dynamic stability in principal parametric resonance of rotating beams: method of multiple scales versus

differential quadrature method, Int. J. Non-Linear Mech. 85 (2016) 118–125.
[22] M. Heidari, H. Arvin, Nonlinear free vibration analysis of functionally graded rotating composite Timoshenko beams reinforced by carbon nanotubes, J.

Vib. Control 25 (14) (2019) 2063–2078.

http://refhub.elsevier.com/S0888-3270(20)30278-8/h0005
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0005
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0010
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0010
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0015
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0015
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0020
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0020
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0025
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0025
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0030
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0030
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0035
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0040
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0040
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0045
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0050
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0055
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0060
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0060
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0065
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0065
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0070
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0070
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0075
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0075
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0080
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0080
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0085
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0085
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0090
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0095
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0095
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0100
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0100
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0105
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0105
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0110
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0110


H. Arvin et al. /Mechanical Systems and Signal Processing 144 (2020) 106892 21
[23] A. Arena, M. Taló, M.P. Snyder, W. Lacarbonara, Enhancing flutter stability in nanocomposite thin panels by harnessing CNT/polymer dissipation, Mech.
Res. Commun. 104 (103495) (2020) 1–6.

[24] A.H. Nayfeh, D.T. Mook, Nonlinear Oscillations, Wiley-Interscience, New York, 1979.
[25] L. Meirovitch, Principles and Techniques of Vibrations, first ed., Prentice-Hall, New Jersey, 1997.
[26] W. Lacarbonara, Nonlinear Structural Mechanics. Theory, Dynamical Phenomena, and Modeling, first ed., Springer, New York, 2013.
[27] N.M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. ASCE 85 (3) (1959) 67–94.

http://refhub.elsevier.com/S0888-3270(20)30278-8/h0115
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0115
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0120
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0120
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0125
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0125
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0130
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0130
http://refhub.elsevier.com/S0888-3270(20)30278-8/h0135

	Nonlinear vibration analysis of rotating beams undergoing parametric instability: Lagging-axial motion
	1 Introduction
	2 Mechanical model of rotating beams
	3 Nonlinear free vibrations of the rotating beam
	4 Principal parametric resonance
	4.1 Stability analysis

	5 Numerical simulations via Newmark-[$] \beta [$] method
	6 Results and discussions
	6.1 Nonlinear free vibrations analysis
	6.2 Principal parametric resonance analysis

	7 Conclusions
	Conflict of interest statement
	CRediT authorship contribution statement
	Acknowledgments
	Appendix A The linear inertia, gyroscopic and stiffness operators
	Appendix B Quadratic inertia and stiffness operators
	Appendix C Parameters employed in the secular terms and the Galerkin discretization
	Appendix D The parameters employed in the modulation equations of the kth mode
	Appendix E The employed parameters in the Galerkin discretization
	References


