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A B S T R A C T

An eight metal oxide semiconductor sensor (MOS) based electronic nose (e-nose) has been used to characterize
freshness of strawberry in different polymer package types. Pattern recognition methods such as principal
component analysis (PCA), linear discriminant analysis (LDA), and support vector machine (SVM) were used to
classify and investigate the effects of polymer packages on strawberry freshness. The packages were Ethylene
Vinyl Alcohol (EVOH), Polypropylene (PPP), and Polyvinyl chloride (PVC). The response surface method (RSM)
was considered for selection of optimized sensor array in terms of the contribution of each sensor in sample
classification. Sample headspace patterns were examined on days 1, 8 and 16. The results revealed that PCA
explains 84% of the variance between the data. The LDA classified samples with an accuracy of 86.4%. The SVM
method with polynomial function could accurately recognize samples as C-SVM by 86.4% and 50.6% in training
and validation, and as Nu-SVM by 85.2% and 55.6% in training and validation with a radial basis function,
respectively. Finally, among the eight sensors used in the study, MQ8, MQ3, TGS813, MQ4, and MQ136 sensors
were selected as optimal response sensors using RSM to reduce the cost of fabrication. Furthermore, optimal
application sensors for each polymer package were identified using RSM.

1. Introduction

One of the most practical and non-destructive ways to investigate
the quality of food is the electronic nose (e-nose) system. This system
simulates the sense of human olfactory and detects the headspace of the
samples with an array of sensors (Ghasemi-Varnamkhasti et al., 2011,
2015). It is a high-performance and precise method which provides
enough information and specifications of food in the form of data in a
fast and reliable way. E-nose consists of two stages of diagnosis and
analysis, and these two stages include signal detection, extraction of
features, and data output with specific patterns. It also provides effec-
tive and useful information for development of regression models de-
monstrating the food quality attributes (Men et al., 2018).

Optimization includes studying the optimum conditions of the
problems, creating a suitable model and determining the algorithm for
solving, creating the theory of convergence for algorithms and nu-
merical experiments with common problems and the problems that

occur in real conditions (Gadhiya et al., 2018). The theory and methods
of optimization, which are relatively new methods in mathematics,
analytical mathematics, and research problems, are used in engineering
domains, business management, military industry and space tech-
nology. RSM as an optimization approach consists of a set of solutions
which are used to examine optimal operating conditions through ex-
perimental methods. This method includes performing various tests
using the results of an experiment to guide a route to be followed later
(Moradi et al., 2018).

Food packing films have a uniform and integrated structure with a
thickness of less than 0.01 in. (Emamifar et al., 2011). There exist some
reported studies in the literature dealing with the packaging films for
postharvest quality examination. Ghasemi-Varnamkhasti et al. (2018a)
conducted a study on the properties of polymer packages of poly-
ethylene on fungi. According to the results, this type of package
maintained the product freshness and also delayed the corruption and
its physical and chemical changes.
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So far, various studies have been conducted in the field of e-nose
systems to investigate the authenticity of foodstuffs, such as milk
(Tohidi et al., 2018), sunflower oil (Haddi et al., 2013), cumin (Tahri
et al., 2017), saffron (Kiani et al., 2017), olive oil (Jolayemi et al., 2017;
Ordukaya and Karlik, 2017), and shallow rice (Baskar et al., 2017).

According to previous reports and to the best of our knowledge, this
study is the first research conducted on the use of RSM combined with
chemometrics approaches for selection of an optimized gas sensors
array to characterize the strawberry freshness in polymer packages.
Packaging strawberries in well-ventilated warehouses under controlled
conditions to increase the freshness is costly and needs high energy. On
the other hand, the mass production of this fruit in Iran leads re-
searchers toward using precise engineering techniques to improve the
quality of the fruit. Therefore, polymer package was used as an effective
way to preserve strawberry fruit quality. At the following, the head
space of packages was investigated by e-nose, and the best optimized
sensor in the e-nose system was selected using RSM.

2. Materials and methods

2.1. Sample preparation

Fresh strawberries (Fragaria Ananasa cv.'Gaviota’) were harvested at
full size (length 4 cm and diameter 3 cm fruit size average) with more
than 75% red color. Fruit were stored in small sterile plastic containers
(20× 15×6 cm) and transported to the laboratory after harvest.

To pack samples, Polyvinyl chloride (PVC) (with a thickness of
2mm, permeable against moisture and O2), Polypropylene (PPP) (with
a thickness of 0.5 mm, impermeable against moisture and gases) and
Ethylene Vinyl Alcohol (EVOH) (with a thickness of 3mm, resistant to
oxygen penetration) were prepared from the Iranian Polymer Research
Institute. When the fruit were cleaned with hand and transferred to the
laboratory environment, all samples were placed at 18 °C for 1 h, to
reach balance with the environment. A 15 strawberries were randomly
selected and placed in the cylindrical package (with height of 20 and
diameter of 10 cm). Packages were sealed and three replicates (three
packed cylinder) were considered for each treatment. The packages
were then placed in a refrigerator at 4 °C and 75% relative humidity
(Silva et al., 2016) and data was then taken on days 1, 8 and 16.

2.2. The structure of the e-nose system

An e-nose consisting of eight gas sensors was designed and devel-
oped in our laboratory to determine the freshness of the strawberries in
polymer packages. The system included oxygen capsules, sensor
chamber, sampling chamber, data acquisition card, and air flow valves
(Fig. 1). Eight sensors such as TGS2602, TGS2620, TGS813 and TGS822
were purchased from Figaro Engineering, Inc. (Glenview, USA), three
sensors containing MQ3, MQ8 and MQ136 were provided from
HANWEI Electronics Co. (Hanwei, China) and one obtained from FIS
(Osaka, Japan) that were engaged in a Teflon cylindrical chamber

which worked at constant temperature. The most prominent features of
this type of sensor are its long life, high response to moisture, high
chemical resistance and low price. Each of these sensors reacts to cer-
tain combinations of volatile substances in the chamber (Table 1). For
more details on the instrumentation system, the reader can refer to
Ghasemi-Varnamkhasti et al. (2018b).

The operation stages of the e-nose system include baseline correc-
tion, measurement, and purging of the sensor chamber. The baseline
correction step was performed to provide a steady state for the sensor
array response. At this stage, the carrier gas (oxygen) was injected into
the sensor chamber through the pump for 170 s (valve 1 was open and
valves 2 and 3 were closed). These sensors require oxygen to function.
Any change in the volatile material gas leads to the oxidation reactions
at the sensor surface, which in turn results in a change in the sensor
resistance (Moon et al., 2018). At the measurement stage, the oxygen
gas enters into the sample chamber and transfers the sample headspace
to the sensor chamber. A duration of 230 s maximized the sensor re-
sponse (valve 1 was closed and valves 2 and 3 were open). The purging
step was performed to reach the sensor responses to the baseline and
prepare the system for subsequent experiments. The carrier gas was
injected into the sensor chamber for 110 s (valve 1 was open and valves
2 and 3 were closed).

2.3. Pre-processing and preparing data extracted from sensor signal

The purpose of pre-processing data is to detect sensor responses and
to increase the accuracy in analyzing detection patterns. The pre-pro-
cessing stage includes baseline correction, compression, and normal-
ization. Baseline correction is performed to improve the quality of the
sensors response using three methods, including differential, fractional
and relative function (Kiani et al., 2018). The average of the last 10 data
at the measurement step was used to perform the pattern recognition
methods. In this research, the fractional method was used to correct the
baseline. The fractional method has been widely used in MOS sensors to
correct the baseline (Eq. (1)) and normalize the data (Sanaeifar et al.,
2016).
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In the Eq. (1), x t( )r is the sensor response at time t, x (0)r is the
lowest sensor response before the measurement step and y t( )r is the pre-
processed response. The next step is to compare responses with the aim
of constructing a feature vector for all sensors. For this purpose, the
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In the Eq. (2), xr
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s is the
lowest response and ∀ xmax [ ]s r

s is the highest response in the measure-
ment phase (Sanaeifar et al., 2016).Fig. 1. Schematic representation of electronic nose system.

Table 1
Specification and application of sensors used in sensor array.

Sensors Detection ranges (ppm) Gas Target

TGS813 500-10000 Methane, Ethanol, Propane, Isobutene,
Hydrogen

MQ8 100-10000 Hydrogen (H2)
MQ4 200-10000 Methane, natural gas

TGS822 50-5000 Organic solvent vapor
MQ136 1-200 Hydrogen Sulfide H2S (gas)
MQ135 10-300 Alcohol, Ammonia-benzene-carbon dioxide

(CO2)
MQ-3 0.05-10 Alcohol
FIS 1-10 Air quality control - hydrogen sulfide
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2.4. Data analysis

2.4.1. Principal component analysis (PCA)
The PCA method is a statistical method that uses orthogonal

transmission to transform a set of observed correlated variables into a
set of non-correlated linear variables that are the main components.
This transformation is such that the first major component has a high
variance and then the other components also have high variances, with
limits that interact with the previous components (Aït-Sahalia and Xiu,
2018). PCA is a sensitive and high-precise method for finding principal
variables, and it is one of the most common ways for data analysis and
dimension reduction in multivariate systems (Esteki et al., 2017). Also,
data loading diagrams of the sensor set in PCA are provided (Ghasemi-
Varnamkhasti et al., 2015). The pattern recognition was used to in-
vestigate the distinction between different polymer packages on d 1, 8
and 16 of storage.

2.4.2. Linear discriminant analysis (LDA)
The linear discriminant analysis method creates a linear combina-

tion of all the features that make the classification in a series of samples.
This function increases between-group variance and reduces within-
group variance. Transformation and transmission in this function are
performed in such a way that with the entrance of new observations,
the maximum quantity is obtained to predict the between groups var-
iance (Tharwat et al., 2017; Varmuza and Filzmoser, 2009).

2.4.3. Support vector machine (SVM)
The SVM method was introduced by Wapnik et al. (1998). The

purpose of this method is to find an optimal plate with the smallest
distance between all data and points. The SVM training algorithm as-
signs a new model to the data set or transforms the data into non-
probable boundary linear classification (Zhou et al., 2015). The result
of this model is a representation of data in a multidimensional space,
where data have been categorized in classes and are characterized by a
separating hyperplane between data. The new data are also in the same
space and their classification is based on the range that is placed on the
plate. In other words, given labeled training data (supervised learning),
the algorithm outputs an optimal hyperplane which categorizes new
examples (Fig.2) (Esteki et al., 2017).

All PCA, LDA and SVM analyses were performed using Unscrambler
x10.4 software (CAMO AS, Trondheim, Norway).

2.4.4. Determination of optimal conditions using RSM
The effect of two independent variables (storage time and package

type) on dependent variable (sensor response) was studied using
Historical Data Design. This method can be used for the variables that
are incapable of being tested and also do not have central factors
(Karami et al., 2016). It is assumed that there are two mathematical
functions fk for yk which are as follows.

=y f ε ε( , )k k 1 2 (3)

where, ε ε( , )1 2 are the natural variables in natural unit, ε1 represents the

storage time entered and ε2 is the type of polymer package. In response
surface problems, natural variables are converted to the encoded vari-
ables (x x,1 2).

=y f x x( , )k k 1 2 (4)

In this research, a second-order polynomial model (Lin et al., 2007)
was used to model the process.

Fig. 2. Schematic of SVM classification method.

Table 2
Independent test variables and selective levels in process analysis.

Levels Independent
variables

Natural
variables

Coded
variables

1 (-1) 8 (0) 16
(+1)

ε1 X1 Time (Day)

Control (+1) EVOH
(+2)

PPP (+3) PVC
(+4)

ε2 X2 Package

Fig. 3. Score plot of PCA analysis for strawberry polymer packages on the days
1, 8 and 16 of storage.

Fig. 4. Score plot of PCA analysis for strawberry polymer packages on days 1, 8
and 16 of storage.

Fig. 5. Scores plot of PCA analysis for strawberry polymer packages on days 1,
8 and 16 of storage.
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In Eq. (5), yk is the predicted response considered as dependent
variables (k= 1, 2, …, 8). Xi is the encoded input variable or the in-
dependent variable (i = 1, 2). The value of the independent variables
was encoded between -1 and +1 and the package type was encoded
from +1 to +4. β is the regression coefficients parameter. Using the
second-order model, five mathematical models were evaluated for each
dependent variable in the mentioned form. In this plan, 45 testing units
were obtained at a central point to determine the error value (Table 2).

The experimental design, process optimization and ANOVA on
second order model coefficients were developed using Design Expert 10
software. Significant terms in the model were obtained by using var-
iance analysis for each response.

3. Results and discussion

3.1. PCA

According to PCA results, there is a significant difference between
the control and polymer packages strawberry samples. PC1 and PC2
explained 72% and 12% of the variance among the samples,

respectively (Fig. 3), and overall, 84% of the total variance of the data
was explained. Based on the results, control samples were completely
separated by PCA. On day 8 of storage, the EVOH package was also
significantly distinguished from control, PPP, and PVC packages. This
result means that strawberry samples in EVOH packages did not change
much during storage, which depends on the structure of the EVOH
package. Because EVOH prevents the entry of oxygen into the package
and does not allow the respiration of the fruit. On the day 8 of storage
(Fig. 4), the two components of PC1 and PC2 explained 72% and 12% of
the variance among the samples, respectively, and accounted for 84%
of the total variance of data. At this storage time, all samples in the
polymer package are distinguished from control and PPP while PVC
packages are not well differentiated, but the EVOH package is com-
pletely distinguished from other packages. On the day 16 of storage
(Fig. 5), PC1 and PC2 could explain 74% and 16% of the variance
among samples, respectively, and overall, accounted for 90% of the
total variance of data. At this time, in addition to the complete differ-
entiation of packages from the control samples, the EVOH package can
be distinguished from PPP and PVC packages, and the packages have
been classified separately. In a study conducted by Liu and Tang (2017)
using the artificial nose and PCA method, the headspace of the samples
was accurately categorized by 92%. Qiu et al. (2015) also classified
strawberries using e-nose and electronic tongue (e-tongue) with PCA
method with an accuracy of 99.8%. Pan et al. (2014) also predicted
strawberry fungal diseases using e-nose and PCA pattern recognition.
Qiu et al. (2014) categorized strawberry juice using e-nose coupled
with PCA method.

3.2. LDA

The score diagram according to the first two main components
(LD1-LD2) is shown in Fig. 6. The LDA method was used to evaluate the
potential of headspace recognition system. According to the results, this
method had a high capability (with an accuracy of 91.4%) for classi-
fication of the odor patterns of polymer and control packages on the
days 1, 8 and 16. According to the results, on the days 1, 8 and 16 of
storage, the control and all polymer packages of EVOH, PPP, and PVC
have been well distinguished. Qiu et al. (2015) classified strawberries
using e-nose and e-tongue using the LDA method with an accuracy of
99.9%. Qiu et al. (2014) also classified strawberry juice using the e-nose
and LDA with a very high precision.

3.3. SVM

Two types of C-SVM and Nu-SVM were used to classify samples in
the SVM method. The parameters Nu, C and γ were validated using trial
and error by minimization. Four types of kernel functions including
linear, polynomial, radial base and sigmoid were also used. In the C-
SVM method, the polynomial function had the highest accuracy in the
classification of strawberry samples in the polymer package with an
accuracy of 86.41% for training and 50.61% for validation. Also, in the

Fig. 6. LDA analysis for strawberry polymer packages on the days 1, 8 and 16 of
storage.

Table 3
Results and comparison of Nu-SVM and C-SVM models subjected to the kernel
functions.

Kernel
function

C-SVM Nu-SVM

c γ Train Validation Nu γ Train Validation

Linear 4.64 – 64.19 50.61 0.44 1 71.60 51.85
Polynomial 0.21 4.64 86.41 50.61 0.44 1.66 75.30 48.14
Radial Basis

Function
0.21 1.66 56.79 51.85 0.33 0.59 85.18 55.55

Sigmoid 0.21 0.07 44.44 43.20 0.55 0.07 61.72 53.08

Fig. 7. SVM analysis for strawberry polymer packages on the days 1, 8 and 16 of storage for TGS813 and MQ8 sensors with linear function.
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Nu-SVM method, the radial basis function with an accuracy of 85.18%
and 55.55%, respectively, for training and validation, had the highest
classification accuracy of strawberry samples in polymer package. The
results of the SVM method are shown in Table 3. Finally, the classifi-
cation of strawberry samples in polymer packages on the days 1, 8 and
16 was carried out based on a linear function with an accuracy of
72.84% (Fig. 7). Qiu et al. (2015) classified strawberries with an ac-
curacy of 25.23% using e-nose and e-tongue via SVM method.

3.4. Optimization by RSM

A summary of the results of ANOVA, and also the P-values for linear
second-order, and reciprocal terms related to the second-order regres-
sion model, are presented in Table 4 for all sensors. Time variations on
TGS813 and MQ4 sensor responses at the 5% significance level, and on
the responses of MQ8, TGS822, MQ3, and FIS sensors were significant
at the 1% level. In contrast, time variations on the response of the
MQ136 and MQ135 sensors were not significant. Also, packaging af-
fected the response of MQ8 and MQ3 sensors at the 1% levels, and for
TGS813 sensor response at the 5% level. In contrast, the package
treatment on the response of MQ4, TGS822, MQ136, MQ133, and FIS
sensors was not significant. Considering the importance of the sensor
response, after the test, the most suitable sensors were selected with the
optimal responses along with the best packages at the start of the test.

We concluded that for the e-nose, MQ8, MQ3, TGS813, MQ4, and
MQ136 sensors can be used to detect the strawberry headspace in
EVOH, PPP, and PVC packages.

To reduce the fabrication cost, the efficiency and effectiveness of
each sensor in different packages were examined using the RSM to
determine which sensors are more applicable in the sample pattern
recognition in different packages. MQ3, MQ8, TGS813, and MQ4 sen-
sors had the highest ability for strawberry recognition. Using the re-
sponse surface equations (Table 5), the responses of other sensors can
be predicted. Among the second-order terms, there is a relationship
between time and package and the response of the sensors. Among the
reciprocal terms, the positive sign indicates a direct effect and the ne-
gative sign indicates the reverse relationship between variables. In the
present study, all linear terms have positive sign and the interaction or
second-order effect represents a negative and inverse relationship. The
negative coefficients indicate that the response of the sensors is reduced
by increasing the terms of interaction of time and packages.

The optimal sensor responses are shown in Table 6. Satisfaction
index (desirability) indicates the strong ability and the strong re-
lationship between sensor responses and packages. Among all the
packages, the response of the sensors in the EVOH and PPP packages
has the highest and most optimal values suggested by the researchers at
the beginning of the test.

In Fig. 8, the contour surfaces are shown for the response of the

Table 4
ANOVA results for general models and prediction of sensor responses based on RSM.

Source TGS813 MQ8 MQ4 TGS822 MQ136 MQ135 MQ3 FIS

df SS p-Value SS p-value SS p-Value SS p-Value SS p-Value SS p-Value SS p-Value SS p-Value

Model 5 34.78 0.00 25.47 0.00 54.01 0.00 16.24 0.00 24.30 0.00 6.93 0.00 4.64 0.00 42.68 0.00
Time 1 0.27 0.032 1.04 0.00 0.42 0.046 0.38 0.00 0.03 0.464 2×10−4 0.933 0.27 0.00 1.82 0.00

Packages 1 0.21 0.057 0.20 0.01 0.3 0.093 0.10 0.134 0.04 0.381 0.062 0.154 0.037 0.00 0.14 0.297
Time× Packages 1 0.34 0.016 0.31 0.00 0.51 0.028 0.18 0.025 0.11 0.169 0.027 0.341 0.049 0.00 0.35 0.106

Time2 1 0.36 0.014 1.13 0.00 0.54 0.24 0.43 0.00 0.06 0.302 9×10−4 0.86 0.29 0.00 1.83 0.00
Packages2 1 2.52 0.00 1.26 0.00 4.67 0.00 0.96 0.00 2.04 0.00 0.65 0.00 0.14 0.00 4.47 0.00
Residual 75 4.25 2.22 7.68 3.44 4.28 2.23 0.25 9.72
Lack of Fit 3 1.51 0.00 0.78 0.00 2.76 0.00 0.74 0.00 1.15 0.00 0.29 0.019 0.10 0.00 1.88 0.00
Pure Error 72 2.74 1.44 4.92 2.70 3.14 7.95 0.15 7.84
Cor Total 80 39.12 27.69 61.68 19.69 28.58 9.17 4.90 52.40

Table 5
Summary of estimated response surface models.

Sensor Mean R2 Equation

TGS813 3.30 0.8914 Y=1.69+0.91×Time+1.20×Package-0.122×Time×Package
MQ8 3.84 0.9197 Y=2.71+0.80×Time+0.89×Package-0.116×Time×Package
MQ4 3.06 0.8755 Y=0.904+1.05×Time+1.64×Package-0.151×Time×Package

TGS822 2.48 0.8251 Y=2.71+0.80×Time+0.89×Package-0.116×Time×Package
MQ136 3.13 0.8501 Y=1.65+0.65×Time+1.07×Package-0.069×Time×Package
MQ135 1.23 0.9164 Y=2+0.80×Time+0.89×Package-0.116×Time×Package
MQ3 4.62 0.9487 Y=4.26+0.384×Time+0.28 9×Package-0.046×Time×Package
FIS 3.07 0.8145 Y=1.05+0.648×Time+1.66×Package-0.124×Time×Package

Table 6
Best responses provided by sensors and best package by the model at the beginning of the tests.

No. Package TGS813 MQ8 MQ4 TGS822 MQ136 MQ135 MQ3 FIS Desirability

1 PPP 3.949 4.279 3.873 2.866 3.733 1.602 4.795 3.595 0.901
2 PPP 3.950 4.279 3.874 2.866 3.734 1.601 4.796 3.594 0.901
3 PPP 3.948 4.278 3.872 2.866 3.733 1.604 4.795 3.596 0.901
4 EVOH 3.951 4.279 3.874 2.866 3.733 1.600 4.796 3.593 0.901
5 EVOH 3.947 4.277 3.871 2.866 3.734 1.605 4.794 3.594 0.901
6 EVOH 3.946 4.277 3.870 2.866 3.733 1.605 4.794 3.596 0.901
7 EVOH 3.952 4.279 3.875 2.864 3.731 1.591 4.797 3.584 0.900
8 EVOH 3.938 4.266 3.851 2.847 3.708 1.563 4.796 3.541 0.890
9 EVOH 3.930 4.259 3.839 2.840 3.699 1.553 4.795 3.523 0.885
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sensors. The test time ranges from days 1 and 16, and the packages are
encoded from 1 to 4. Based on the results, MQ3 and MQ8 sensors with
the ability to detect alcohol and hydrogen were appropriate until the
day 8 of storage and over time, the sensor response to the type of
package has decreased, demonstrating the low stability of MQ3 in the
odor recognition of strawberry samples in polymer packages. Within
EVOH, PPP, and PVC packages that are resistant to moisture and
ethylene, moisture and gases and oxygen, the strawberry sample pre-
sumably ripens slower due to lower respiration and removes less carbon
dioxide and reduces sensor recognition relative to the early days of
storage. The MQ4 and TGS813 sensors, with the ability to detect me-
thane, propane and butane, have a higher power and stability than two
previous sensors. Until day 8 of storage, the MQ4 and TGS813 sensors
had the greatest ability to detect the odor of the fruit samples. These
two sensors have been more applicable to both EVOH and PPP packages
than the PVC package, but have low recognition ability for the control
samples due to the easy removal of the gases from package.

The MQ136 and MQ135 sensors, which detect hydrogen sulfide and
alcohol, ammonia, benzene, and carbon dioxide, respectively, had good
detection capability for all packages. The MQ135 sensor has the highest
detection capability in packages because these packages do not allow
carbon dioxide diffusion, and accumulation of the gas would pre-
sumably slow fruit ripening. So this type of sensor can also be used. The
TGS822 sensor is capable of detecting organic solvent vapor and in
these packages. Owing to the low detection limit, FIS was not able to

detect the headspace of strawberry samples (Fig. 9).

4. Conclusion

The application of polymer packages on strawberry fruit was in-
vestigated using an e-nose system based on an eight metal oxide
semiconductor sensors array in combination with pattern recognition
methods such as PCA, LDA and SVM. Fruit freshness were well classi-
fied with unpackaged and packaged samples using pattern recognition
methods. The PCA method explained 84% of the total variance of data.
The LDA method categorized all sensor response data with high accu-
racy. On the other hand, SVM in Nu-SVM and C-SVM resulted in the
highest classification accuracy by radial and polynomial basis function,
respectively. The sensors were identified using an optimization method
with response surface to detect the headspace pattern of the strawberry
samples. According to the results, MQ8, MQ3, MQ135, MQ136, MQ4,
and TGS813 sensors were selected as the best sensors for use in an e-
nose system.
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