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Abstract
Concrete arch dams are three-dimensional structures which are statically indeterminate due to integrity and arching per-
formance. Hence, the spatial and temporal temperature gradients in concrete arch dams affect the volume of the structures
and generated internal stresses threaten stability of the structures. Accordingly, estimation of long-term thermal behavior of
these structures for proper serviceability with considering dam crest displacement is necessary, and this issue requires the
application of appropriate prediction models. The goal of this study is to implement the support vector regression (SVR)
and artificial neural network (ANN) models for prediction of the intermediate block displacement of the dam crest. For this
purpose, displacement of dam crest is investigated with ABAQUS simulation model over a period of 8 years, and then, the
results of the simulation are used in the soft models (SVR and ANN) as the input data. The analysis of the results of two
models with five error indicators shows that the error reduction in the SVR model is about 32% less than the ANN model in
the testing stage. Also, investigation of the normal cumulative probability distribution related to the outputs of two models
indicates high degree of deviation on cumulative probability distribution of the ANN model. This is due to the fact that the
ANN model ignores fundamental errors in the training process. Therefore, based on the SVR model one can predict the dam
stability in an acceptable accuracy range, only by measuring two different parameters including reservoir water level and the
air temperature.

Keywords Concrete arch dams · Predicting displacement behavior · Dam crest · Support vector regression · Artificial neural
network

1 Introduction

Concrete arch dams are three-dimensional structures which
are statically indeterminate due to integrity and arching
performance. Hence, the spatial and temporal temperature
gradients in concrete arch dams affect the volumeof the struc-
tures and generated internal stresses threaten stability of the
structures. As a result, stresses greater than tensile strength of
concrete induce cracks in the external surface of the dam. In
concrete arch dams, these cracks usually have direct effects
on the sliding and overturning stabilities of dam.
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Increasing of cracks can be critical when thermal loads
are combined with hydrodynamical and hydrostatical loads
of water and thawing–freezing cycle. Therefore, it endangers
the overall stability of the dam (Agullo et al. 1991). This
subject shows the importance of determination of the thermal
stresses for safety evaluationof the structures. Since the effect
of temperature variations on the structures is observed in all
design, construction, and operation phases for dam safety
evaluation, the analysis of arch dams is of great importance
(US Army Corps of Engineering 1994). Due to permanent
behavior of thermal reactions, it has significant effects on the
useful life and thermal behavior of the dam at the time of
operation.

In concrete arch dams, the reservoir water level is low
in relatively long time period. Consequently, more area of
external surface of dam is affected by direct solar radiation,
and thus, the time phase difference between internal temper-
ature of concrete and the air temperature would decrease. So,
irregular behavior of dam is expected due to these phenom-
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ena (Bofang 2014). With regard to the drought and water
shortage conditions in Iran in recent years, the water level
in many dams is sometimes lower than the minimum oper-
ational level and the thermal cracking resulted from water
drawdown in dam body can be observed. Accordingly, the
necessity of management and assessment of arch dam ther-
mal behavior for long-term operation considering concrete
dam crest displacement is clear. Therefore, application of
accurate and reliable predictive models seems essential in
this field.

In recent years, in information processing of problems
without any explicit solution, implementation of intelligent
systems, such as artificial neural network (ANN) and sup-
port vector regression (SVR), is widely increased. These
soft models have been applied to solve miscellaneous water
resource issues such as forecasting water levels and water
quality in rivers, dams, and groundwater (Yoon et al. 2011;
Hipni et al. 2013; He et al. 2014; Seo et al. 2016; Hosseini
and Mahjouri 2016; Humphrey et al. 2016; Barzegar et al.
2017; Csábrági et al. 2017; Ebrahimi and Rajaee 2017).

In water resources management studies, the ANN was
used since French et al. (1992) and then these soft models
were used increasingly in water sciences.

The SVR is a relatively new and powerful tool, providing
solution for classification and regression based on statistical
learning theory. This model was first introduced by Vapnik
(1995). Researches show that the SVR has the capability and
goodperformance, evenwhen little data are available (Vapnik
1998).Althoughmany applications ofANNandSVRmodels
were presented in various fields, only a few applications were
observed in design of hydraulic structures.

The soft models have been applied in different subjects,
such as dam engineering. Some studies related to this topic
can be referred to as follows: Gaziev (2000), Fedele et al.
(2006), Cao et al. (2009), Karimi et al. (2010), Guang-yong
et al. (2011), Popescu (2012), Zhou et al. (2015), Salazar
et al. (2015), Fisher et al. (2016), Stojanovic et al. (2016),
and Saqib and Ansari (2017).

Mata (2011) evaluated the performance of multiple lin-
ear regression and artificial neural network models for safety
control of concrete dams under various environmental loads
(hydrostatic pressure and temperature gradients). Kao and
Loh (2013) used the static neural networks (SNNs), the
nonlinear autoregressive with exogenous neural network
(NARXNN), the principal component analysis (PCA), and
the auto-associate network (AAN) models for health mon-
itoring of Fei-Tsui dam. Behnia et al. (2013) estimated
the subsidence of dams (crest settlement) at the design
stage using adaptive neuro-fuzzy inference system and gene
expression programming intelligent methods.

Rankovic et al. (2014) predicted tangential displacement
of a concrete dam based on support vector regression (SVR).

The results showed that the SVRmodel provides more accu-
rate results than the other models.

The literature review reveals that the hybrid of ABAQUS
simulation model and soft-computing tools is not consid-
ered in predicting the displacement of intermediate block of
the dam crest. Due to the complexity of the parameters that
need to be adjusted in the ABAQUS model, it is not possible
to directly communicate the results of the ABAQUS model
with management models of the dam operation. Therefore,
according to high efficiency of black-box simulation mod-
els in predicting the structural response to thermal stresses
of dams, the development of these models is essential as an
interface between the ABAQUSmodel and the optimal oper-
ation models of the dam reservoirs. It should be noted that in
this study, these interface models as thermal behavior simu-
lator of the dam determine the displacement of intermediate
block of the dam crest under different hydrological condi-
tions. Under these conditions, the dam reservoir is placed
under different thermal stress and water level due to the
amount of water stored in it.

Hence, the objective of this study is to evaluate the pos-
sibility of using ANN and SVR models as a substitution to
the finite element method for predicting the displacement of
intermediate block of the dam crest. These soft models are
able to establish complex nonlinear relationships between
input and output parameters. In order to apply the proposed
approach and study the effects of using these soft models,
Karaj dam in Iran is considered as a case study for prediction
of the influences of variations in water level and temperature
conditions of dam reservoir on the displacement of interme-
diate block of the dam crest. The major contributions of this
study are as follows:

• Development of a two data-based forecasting models for
predicting short-term nonlinear fluctuations of intermedi-
ate block displacement of the dam crest in a strategic dam
reservoir due to variations in water level and temperature
conditions using measured data.

• Comparison of the efficiency and accuracy of the ANN
(with different training algorithms) and SVR (with mis-
cellaneous kernel function) models with different error
criteria in the forecasting performance.

• Proposal of best data-driven model as an interface model
for forecasting intermediate block displacement of the dam
crest for using inwater resourcemanagement optimization
models.

2 Study area and data

Karaj dam, located on63kmnorthwest ofTehran,withwater-
shed area of 764 km2 was constructed on Karaj river. The
average annual inflow to Karaj dam is 472 MCM (million
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Table 1 General characteristics of Karaj concrete arch dam

Maximum height above
foundation

168 m

Crest length 384 m

Foundation altitude 1606 masl

Crest altitude 1768 masl

Buttress width 32 m

Crest width 7.85 m

Reservoir normal capacity 203 MCM

Reservoir minimum capacity 33 MCM

Normal water elevation 1765 masl

Minimum water elevation 1692 masl

cubic meter). The purposes of Karaj dam construction were
as follows: controlling spring flood and preventing damage
caused by flood, annual supply of Tehran drinking water up
to 340 MCM, regulating water for irrigation demands, agri-
culture development in farm lands near Karaj to 130 MCM,
and producing hydroelectric power to help the national elec-
tricity network, especially during consumption peak hours
to an annual rate of 150,000 MWh. According to the impor-
tance of this dam for water supply of capital of Iran, Karaj
dam is used as a case study to investigate structural response
of the dam body to exerted thermal stresses and to predict the
displacement of intermediate block of the dam crest. Table 1
shows general characteristics of Karaj dam.

Karaj concrete dam is a double curvature dam, whose hor-
izontal arches are single-centered circular (without any filet
with constant thickness) and vertical arches are parabolic.
The centers of the internal and the external arches of dam
are coincident, and dam is perfectly symmetrical with regard
to the axis passing through the center of the arches. This
symmetry is proportional to the design, calculation, and con-
struction of the radius of curvature and is presented as one
of the special characteristics of the dam.

In this study, the ABAQUS software is used for modeling
the dam, valley, and foundation. The first step of modeling is
identifying the required data. Since thermal gradient should
be considered in modeling climate effects, the developed
model in ABAQUS is based on the radiation and the convec-
tion. The required data include: the value of the reflection
coefficient of the surrounding land, the water level reflection
coefficient, annual mean of wind speed, Boltzmann constant,
absolute temperature, and the convection coefficient. Since
the arch dams, in terms of geometrical shape, are consid-
ered as large shell structures, the use of solid elements in
modeling is recommended (Labibzadeh and Khajehdezfuly
2010). In order to define thickness of the dam, especially in
the foundation level, the elements with solid thickness are
used. The block elements are used for modeling the body of
dam because of similarity of foundation and body elements,

and increase in the thickness of the dam body at levels near
the foundation. Four-sided cubic elements, available in the
program, are used. The attenuation model of the concrete
is considered using the concrete damage plasticity (CDP)
criteria with coefficient of 3%. This criterion, for the con-
cretematerial, consists of three parts: the required parameters
of the plasticity behavior of the concrete, the pressure–im-
pairment parameters of the concrete and the tensile–damage
parameters of the concrete. The pressure–impairment and the
tensile–damage parameters have important roles in analyzing
the real behavior of concrete. Therefore, determining their
value is of paramount importance. The impairment of the
concrete begins with the nonlinear behavior of the materials.
If there is not any impairment, the values of pressure–impair-
ment and tensile–damage parameters are zero. For the case of
full impairment, the values of these parameters reach to 1 or
100%. By assuming the value of 0.2 for Poisson coefficient,
elasticity properties are defined as well. The total number
of solid elements in the model of the dam body is 364. The
solid element has 20 nodes, and each node has six degrees
of freedom including freedom of the motion in three direc-
tion of x, y, and z as well as the freedom of rotation around
axes of x, y, and z. This element is capable of accepting
large deformations. The interaction can be modeled by this
element too. This element is used for the static (the forces
resulted from water), the dynamic (the effect of earthquake),
and the complex linear and nonlinear analysis. It can be also
used when the model consists of fluid. By the implementa-
tion of the ABAQUS simulation model for different modes
of temperature and reservoir water level, the displacement of
intermediate block of the dam crest is predicted. Input and
output time series data used in this study are presented in
Figs. 1 and 2. Also, Table 2 shows the statistical properties
of each of input (temperature and reservoir water level) and
output (displacement of dam crest) parameters.

3 Methodology

Long-term thermal behavior of arch dams for proper service-
ability with considering dam crest displacement is necessary.
This issue requires the application of appropriate prediction
models. In this study, two soft models (artificial neural net-
works and support vector regression) are used for predicting
displacement of the intermediate block of dam crest. For this
purpose, displacement of the dam crest is simulated over
a period of 8 years (2002–2009) using ABAQUS simula-
tion model under different water levels of the reservoir using
monthly temperature average as input data. Data generated
byABAQUS simulationmodel are considered as soft models
output. Then, based on the produced input–output data set,
different structures are considered for each of the soft models
and their performance is evaluated.
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Fig. 1 Input time series data
during the study period

Fig. 2 Output time series data
during the study period

3.1 Artificial neural networks

ANNs are developed using the function of the brain, the ner-
vous system, and mathematical methods for determination
of pattern of connection between input and output nodes
(Senthil kumar et al. 2013; Tayfur et al. 2014). This soft
model is an effective tool for simulating, predicting, and fore-
casting water resource variables. In ANNs, the multilayer

perceptron (MLP) is the most widely used and is defined by
three types of layers including input neurons, output neu-
rons, and hidden neurons. The back-propagation algorithm
(BPA) can effectively train the network for complex and non-
linear systems in the training stage. The BPA is basically
a gradient descent-based optimization method described by
Rumelhart and McClelland (1986). This method was used
in many researches such as Mohanty et al. (2010); Khashei-
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Table 2 The statistical parameters of input and output data used in simulation models

Parameter The statistical
characteristics

Year

2002 2003 2004 2005 2006 2007 2008 2009

Temperature
(°C)

Max. 25.02 24.74 24.76 25.23 24.74 25 26.21 24.1

Min. 2.1 2.6 −0.28 0.9 0.39 −3.78 3.44 1.48

SD 9.22 7.75 8.76 8.36 9.38 9.68 8.72 7.18

Reservoir water
level (m)

Max. 1765.1 1765.2 1765.1 1764.9 1764.9 1765.1 1749.6 1764.9

Min. 1736.4 1731.5 1727.2 1722.2 1731.2 1727.9 1727.2 1735.5

SD 12.1 12.8 14 15.9 12.44 13.73 8.2 7.97

Displacement
of dam crest
(mm)

Max. 24.88 25.83 25.83 28.4 25.83 34.83 25.83 55.52

Min. 7.3 8.7 5.5 5.5 5.6 5.5 5.5 19.68

SD 5.98 6.76 7.59 8.2 7.1 10.42 10.13 10.58

Siuki andSarbazi (2013); Emamgholizadeh et al. (2015). The
mathematical expression of the MLP with one output is as
follows:

z j � f

(
N∑
i�1

Wi j Xi + b j

)
, j � 1, 2, 3, . . . , M (1)

y � g

⎛
⎝ M∑

j�1

W ′
j z j + b′

⎞
⎠ (2)

where Xi is the input value to the ith neuron of input layer,
z j is the output value of jth neuron in the hidden layer, b j

is the bias of the jth neuron in the hidden layer, b′ is the
bias for output layer, Wji is weight of jth neuron of hidden
layer connected to the ith neuron of the input layer, W ′

j is
the weight of the output layer (y) connected to the jth neuron
of the hidden layer, N and M are number of neurons in the
input and hidden layers, f and g are the activation function in
the hidden and output layers. As shown in Eq. (1), the initial
values of the weight factor and bias vectors could play a
crucial role in the creation of appropriate structures to predict
the output parameters. In order to prevent the solution from
being captured in local optimum value, the ANN structure
is trained using 30 sets of random initial weight factors and
bias to select the best initial weights and bias vectors. The
schematic diagram of the ANN used in this study is shown
in Fig. 3.

In this study, the performance of the proposed architec-
ture of the network [gradient descent back-propagation (GD),
gradient descent with momentum back-propagation (GDM),
gradient descent with momentum and adaptive learning rate
back-propagation (GDX), and Levenberg–Marquardt (LM)]
is investigated using training algorithms.

Levenberg–Marquardt algorithm is one of the fastest,
efficient, and more robust algorithms than the Gauss–New-
ton algorithm for MLP–FNN training. This algorithm was
designed to approach second-order training speed and accu-
racy without having to compute the Hessian matrix. In
fact, this method interpolates between the Gauss–Newton
algorithm and the method of gradient descent to finding
an optimal solution in a minimization problem. The Lev-
enberg–Marquardt algorithm uses an approximate to the
Hessian matrix in the following Newton-like weights update
(Mohanty et al. 2010; Sahoo and Jha 2013):

�wt � [H(wt ) + μI ]−1 JTe(wt ) (3)

where wt is weight in iteration tth, J Jacobian matrix that
contains first derivatives of the network errors with respect to
the weights and biases, JT transpose matrix of J , H � JT J
Hessian matrix, μ learning parameter, I identity matrix and
e a vector of network errors.

GDX algorithm combines adaptive learning rate with
momentum training. In this method, the back-propagation is
used to calculate derivatives of performance (gt ) with respect
to the weight and bias variables. Each variable is adjusted
according to gradient descent with momentum:

�wt � α × �wt−1 + μ × α × gt (4)

where �wt−1 is the previous change to the weight or bias,
α is a constant parameter called momentum coefficient and
its value may vary between 0 and 1, and μ is a scalar called
the learning rate. Similarly, the weight and bias vectors are
adjusted as follows in GDM algorithm:

�wt � α × �wt−1 + μ × (1 − α) × gt (5)
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Fig. 3 Schematic diagram of the
ANN model used in this study

Unlike the GDX and GDM methods, the network weight
updating equation for each variable in GD training algorithm
is adjusted according to gradient descent without momentum
as given below:

�wt � μ × gt (6)

3.2 Support Vector Regression

The SVRmethod is based on the principle of minimizing the
structural risk. In thismethod, the input vector x is transferred
into a space with higher dimensions by nonlinear mapping.
In this space, the linear regression applies to the input vector.
A set of data (xn, yn) is considered, where xn and yn are
independent and dependent variables, respectively, and n �
1, 2, . . . , N whereN is the total number of input–output data
pairs. In fact, the linear regression function can be written as
Vapnik (1998):

f (x) �
N∑

n�1

wnϕn(x) + b (7)

where wn is the weight vector of nth data pairs, b is bias,
and ϕ(x) represents a nonlinear transfer function that maps
the input vectors into a higher-dimensional space. The coef-
ficients w and b are determined by minimizing the following
regularized risk function:

P( f (x)) � C

N

N∑
n�1

Eε(yn, f (xn)) +
‖w‖2
2

(8)

where

Eε(yn, f (xn)) �
{
0 if |y − f (xn)| ≤ ε

|y − f (xn)|−ε otherwise
(9)

where Eε(yn, f (xn)) is called ε-insensitive loss function,
and C is a positive regularization constant that determines
the trade-off between an approximation error and the weight
vector ‖w‖, and ε is a precision parameter representing the
radius of tube size located around the regression function.
Both parameters ε and C must be selected in advance by the
user. The 0.5‖w‖2 is the flatness term (Shirzad et al. 2014).

By introducing two positive slack variables ξ and ξ∗ into
Eq. (8) representing the distance from actual values to the
corresponding boundary values of ε-tube, the overall opti-
mization is formulated as follows:

Minimize

(
ϕ
(
w, ξ, ξ∗) � C

N∑
n�1

(
ξ + ξ∗) + ‖w‖2

2

)
(10)

Subjected to:

{
yi − w.ϕ(x) − b ≤ ε + ξi , ξi ≥ 0
w.ϕ(x) − yi + b ≤ ε + ξ∗

i , ξ∗
i ≥ 0

(11)

This constrained optimization problem is usually solved
by sequential minimal optimization algorithm in a dual form
using Lagrangianmultipliers and imposing theKarush–Kuh-
n–Tucker (KKT) optimality condition (Yoon et al. 2011;
Elbisy 2015). The Lagrangian form of optimization problem
is as follows:

Maximize

⎛
⎜⎜⎜⎝

H(α, α∗) � − 0.5
N∑
i�1

N∑
j�1

(
αi − α∗

i

)(
α j − α∗

j

)
K

(
xi , x j

)
+

N∑
i�1

yi
(
αi − α∗

i

) − ε
N∑
i�1

yi
(
αi + α∗

i

)
⎞
⎟⎟⎟⎠
(12)

Subjected to:

N∑
i�1

(
αi − α∗

i

) � 0, 0 ≤ αi , α∗
i ≤ C (13)
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where αi and α∗
i are Lagrangianmultipliers such that αiα

∗
i �

0 and αi , α
∗
i ≥ 0, and K (xi , x j ) � ϕ(xi )ϕ(x j ) is the kernel

function that yields the inner product in the N-dimensional
space. By using kernel functions, one can perform directly all
required computations in the input space without calculating
the explicit map ϕ(x). In this research, five kernel functions
are used as follows:

• The radial basis function (RBF): K (xi , x j ) �
exp

(
− σ

∥∥xi − x j
∥∥2)

• The polynomial function (PoL): K (xi , x j ) � (xi x j + 1)σ

• The Gaussian RBF function (Gau): K (xi , x j ) �
exp

(
−‖xi−x j‖2

2σ 2

)
• The exponential RBF function (Exp-RBF): K (xi , x j ) �
exp

(
−‖xi−x j‖

2σ 2

)
• The linear function (Lin): K (xi , x j ) � xi x j

where σ represents the kernel parameter.
Having considered the Lagrangian and optimal condi-

tions, the nonlinear regression function can be given as:

f (x) �
M∑
i�1

(
αi − α∗

i

)
K (x, xi ) + b (14)

Schematic diagram of the SVR used in this study is shown
in Fig. 4.

3.3 Data acquisition and preprocessing

In this study the average monthly temperature and the
monthly mean water level at Karaj dam over a period of
8 years (from 2002 to 2009) are used as input parameters.
Also, according to the purpose of this study which is to
predict the monthly rate of the displacement of the inter-
mediate block of the dam crest, the amount of displacement
is simulated by ABAQUS software. These simulated data are
considered as output parameter.

Since each input and output parameters have different
dimensions and their values do not represent the same quan-
tities, in order to obtain the consistency of the soft model, all
data sets are firstly normalized, and then the model outputs
are returned to the their original scale after the simulation by
usingEq. (15). This schemecanprevent themodel frombeing
dominated by the variables with large values and is com-
monly used in data-driven models such as SVR and ANNs
(Yu et al. 2006).Moreover, the results ofBray andHan (2004)
showed that the SVRmodel with normalized input data from
zero to one outperforms the models with unscaled input data.

To apply the soft models on the data sets and accelerate
the learning process models, it is necessary that all data sets
are normalized using the following equation:

Xnor � (ymax − ymin)
X − Xmin

Xmax − Xmin
+ ymin (15)

where Xnor is the normalized value of X (as input vector),
X is the actual value of each data, and Xmin and Xmax
are the minimum and maximum values of the input vectors,
respectively. Also, ymin and ymax are scaling factors. In
this paper, zero and one are selected for ymin and ymax,
respectively.

3.4 Performance evaluation of various models

To evaluate the soft models used in this study, all data sets are
divided into three subsets: training data set (including 85%of
data), validation data set (including 10% of data), and testing
data set (including 5% of data). Based on this classification,
the performance of each soft model in the model-building
process is evaluated using the correlation coefficient (CORR)
and mean squared error (MSE) criteria. In fact, the overall
performance is assessed using CORR index and if two sets
of simulated and real data have the same trend, the value of
this CORR is very close to one. Therefore, based on these
criteria one cannot determine the difference between simu-
lated and the real data. For this purpose, theMSE indicator is
used to determine the difference between the two mentioned
values. The predictive capabilities of the soft model would
be high if the value of this indicator is close to zero. TheMSE
shows the average magnitude of the error between simulated
and measured values. Because the errors are squared before
taking average, great errors take a relatively high weight.
Therefore, MSE is a useful error index when great errors are
particularly undesirable (Yoon et al. 2011).

For evaluating the efficiency and superiority of the soft
models, the mean error (ME), the mean absolute percent-
age error (MAPE), the Nash–Sutcliffe efficiency (NS) are
used as model performance criteria. The ME measures the
bias of overall errors;MAPE shows the relativemagnitude of
errors, and NS represents the percentage of the initial uncer-
tainty explained by the model. Its value varies between −1
and 1. The values closer to one show that the model perfor-
mance is more appropriate. The mathematical forms of these
indicators are as follows:

CORR �
∑n

i�1 (xmi − x̄m)(xci − x̄c)√∑n
i�1 (xci − x̄c)2

∑n
i�1 (xmi − x̄m)2

(16)

MSE �
∑n

i�1 (xmi − xci )2

n
(17)

ME �
∑n

i�1 (xmi − xci )

n
(18)
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Fig. 4 Schematic diagram of the
SVR model used in this study

MAPE � 100 × 1

n
×

(
n∑

i�1

|xmi − xci |
xmi

)
(19)

NS � 1 −
∑n

i�1 (xmi − xci )2∑n
i�1 (xmi − x̄m)2

(20)

where xmi and xci are the measured and simulated values,
respectively. Also, x̄m and x̄c are the average of measured
and simulated values.

4 Results and discussion

In order to predict the displacement of the intermediate block
of the dam crest with respect to variations of water level and
temperature based on data generated byABAQUSsimulation
model, the miscellaneous structures of soft models described
in this study are investigated. Then, the selected structures of
each soft model are compared in terms of prediction accu-
racy. It should be noted that in this study, the ANN and SVR
modeling was performed using MATLAB R2017b software.

4.1 Development of ANNmodel

In this study, in order to build a neural network simulation
model the following steps need to be taken:

• selection of the input and the output data and statistical
analyses of them

• data normalization
• selection of the transfer function and ANN architecture
• selection of the network learning algorithm
• selectionof the appropriate indicators to assess thenetwork
performance

• selection of stopping criteria

4.1.1 Selection of ANN effective parameter

The basic structure of neural network usually consists of the
architecture, the learning algorithm, and the transfer func-
tions. A multilayer perceptron feed-forward neural network
(MLP–FNN) is the most famous of neural network models
that were used in many water resources systems [such as
Kim et al. (2013) and Seckin et al. (2013)] and is selected to
be used in this study. According to the nonlinear nature of
the data set used in soft simulation models, it is necessary to
establish a clear relationship between these data by select-
ing the parameters that provide the most suitable conditions
for simulation with minimum error. In ANN, the important
effective parameters are: number of layers, type of transfer
function in each layer, the number of neurons in each layer,
and criteria to stop the training network. To provide supple-
mentary flexibility to the ANNmodel, linear function is used
in the output layer where extrapolation is needed beyond the
range of training data (Mustafa et al. 2012). Also, the log-
sigmoid transfer functions are considered for the hidden layer
to accelerate the training network. Themathematical transfer
functions are presented in the following equations:

Logsig(n) � 1

1 + e−n
(21)

Purelin(n) � n (22)

where n in Eqs. (16) and (17) represents the weighted sum
for a neuron in the hidden layer and is the weighted sum of
inputs at the output layer, respectively.

The number of layers and neurons in each layer constitutes
the architecture of an ANN model. Appropriate selection of
neurons number and layers is necessary for good predicting
results. Investigations done in this study show that network
complexity increases and accuracy of the output decreases
by the increase in the number of layers. So, in the present
study, three layers (input, hidden, and output) are considered
for the network.
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Table 3 The correlation between the delayed input data and the dis-
placement of the intermediate block of the dam crest

Lag time (month) Temperature Reservoir water level

1 0.48 0.66

2 0.44 0.6

3 0.28 0.42

4 0.02 0.11

In order to determine the number of neurons in the input
layer, the correlation between the delayed input data and the
displacement of the intermediate block of the dam crest (as
output of the network) is determined. It should be noted that
the temperature and the reservoirwater level in the antecedent
times may affect the amount of intermediate block displace-
ment of the dam crest. This issue is studied in this research. If
good correlation between input data at present and antecedent
times exists, it is necessary that the delayed values for each
of the input parameters of soft models be considered. Based
on Table 3, it can be found that none of the inputs show good
correlation at different delays with output. Thus, application
of the values at antecedent times (months) on input data in
soft models is not appropriate.

Therefore, the number of neurons in the input layer was
considered to be 2. In order to determine the appropriate num-
ber of neurons for the hidden layer, the network is trained
for different values of neurons in this layer. This process
is performed by trial-and-error method suggested by Maier
and Dandy (2000). In the developed neural network struc-
ture, the mean square error (MSE) between observed and
simulated data is considered as stopping criteria of training.
Training is stopped when the MSE error index in the vali-
dation stage starts to increase. Under these conditions, the
number of training epochs is determined. In this section, the
results related to the training of theANNmodel are presented
using various training algorithms.

In GD and GDM algorithms, the network is trained with
the different learning rate. By using trial-and-error method
and network training with different values of the learning
rate, it is found that the learning rate of 0.05 could improve
network performance using GD (the model ANN–GD2) and
GDM (ANN–GDM model) algorithms. However, in these
conditions, a small number of output values are negative.
Accordingly,we conclude that bothGDandGDMalgorithms
do not have good capability to predict the displacement of
the intermediate block of the dam crest.

The results of the GDX algorithm indicate that this
algorithm has better performance than the ANN–GD2 and
ANN–GDM models in training and validation stage. This
algorithm in testing stage has a relatively high error rate.
According to the results obtained from the testing data, which
have not previously been used in the training process, it can

be found that the ANN–GDMmodel, despite having a higher
error rate than the ANN–GDX model in the training stage,
is able to provide better in prediction of the displacement of
the intermediate block of the dam crest under unexperienced
conditions. The comparison of the MSE error index associ-
ated with the five neural network models in the testing stage
suggests the superiority of the ANN–LM training algorithm
in estimating the displacement of the intermediate block of
the dam crest with a decrease of 68.6% in the prediction error
compared to the ANN–GDM model.

However, investigation of error index values of models
shows that the LM algorithm attains the acceptable accuracy
with less number of epochs and MSE error index. The LM
algorithm converges faster than other training algorithms. (It
achieves the goal before 8 iterations.) To determine the num-
ber of suitable neurons for the hidden layer and for each
training algorithm, the structures of the developed neural
network were trained 30 times for neurons 2–25 in the hid-
den layer. For example, for neuron 5 in the hidden layer, the
structure of neural network is trained 30 times and the best
structure with minimum MSE error index is extracted. This
process was performed for all the number of examined neu-
rons. The results of the comparison between the amounts of
MSE error index in the number of different neurons can be
observed for the LM training algorithm in Fig. 5. The results
show that in LMalgorithm the structure including 20 neurons
in the hidden layer leads to the lowest error. The number of
output neurons is restricted to one because only one output
(displacement of the intermediate block of the dam crest) is
considered. Hence, the most appropriate architecture of the
network is selected as 2–20–1 (where 2, 20, and 1 are the
number of neurons in the input, hidden, and output layers,
respectively)with three layers and logistic sigmoid and linear
transfer functions for the hidden and output layers, respec-
tively.

Finally, review of the MSE and CORR error index during
training, validation, and testing of different models shows
that theANN–LMmodel has relative advantage in prediction
of the displacement of the intermediate block of the dam crest
(Table 4). This finding is approved by other researchers such
as Mohanty et al. (2010) and He et al. (2014).

In order to evaluate the performance of the ANN–LM
model, the scatter plots related to predicted and observed
values for the training and testing are presented in Figs. 6 and
7. According to these figures, it is clear that the correlation
coefficient of testing stage is higher than the training stage.
This clearly shows the suitability of LM algorithm to predict
the displacement of the intermediate block of the dam crest
even for the data which are not used in the training process.

Comparison between the observed and the predicted inter-
mediate block displacement during training (Fig. 8) shows
that the ANN–LM model is not able to predict accurately
the intermediate block displacement. Significant differences

123



M. M. R. Tabari, H. R. Z. Sanayei

Fig. 5 Comparison between
MSE error index in testing stage
for different neurons located on
the hidden layer

Table 4 Comparison of performance of ANN models during training and testing with different algorithms

Model name Algorithm Number
of epochs

Time (s) Train Validation Test

CORR MSE CORR MSE CORR MSE

ANN–LM LM 8 0.37 0.73 57.36 0.77 25.44 0.93 8.34

ANN–GD1 GD (μ � 0.01) 474 0.59 0.47 99.73 0.54 46.56 0.74 30.54

ANN–GD2 GD (μ � 0.05) 1000 1.11 0.58 80 0.48 46 0.72 34.79

ANN–GDM GDM
(μ � 0.05, α � 0.9)

512 0.62 0.54 85.16 0.5 42.8 0.78 26.56

ANN–GDX GDX
(μ � 0.05, α � 0.9)

16 0.54 0.61 81.57 0.62 41.43 0.64 55.92

Fig. 6 Scatter plot of predicted
values versus observed values of
displacement of the intermediate
block for the training stage of
ANN–LM model
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Fig. 7 Scatter plot of predicted
values versus observed values of
displacement of the intermediate
block for the testing stage of
ANN–LM model

Fig. 8 Comparison between
time series of observed and
predicted intermediate block
displacement using ANN–LM
model (training stage)

between predicted and observed values exist in months when
the values of measured input parameters (mean of temper-
ature and reservoir water level) are high. This is also true
about the obtained results of testing stage (Fig. 9). In fact,
this model (ANN model) has serious weakness at maximum
values of inputs and it is necessary to be implemented with
other soft models.

4.2 Development of SVRmodel

One of the most important parameters for prediction of the
displacement of the intermediate block of the dam crest
using support vector regression model is to determine the
appropriate kernel functions. In this study, the polynomial
(POLYNOMIAL), radial basis function (RBF), Gaussian

(GAUSSIANRBF), power (EXPONENTIALRBF), and lin-
ear kernels are evaluated. With the implementation of SVR
models for different kernel functions, it can be inferred that
the RBF kernel function used in the research of Yu et al.
(2006), Kalteh (2015), Mirzavand et al. (2015), and Elbisy
(2015) is more accurate, and therefore this kernel is used to
predict the displacement of the intermediate block of the dam
crest (Table 5).

In order to increase the accuracy of SVR–RBF model, it
is necessary to determine the governing parameters of this
model (such as C, ε, and γ ) by trial-and-error approach. It
is worth to mention that parameters C and ε influence the
quality and time of training. Also, the value of γ can also
be effective in creating overfitting and underfitting. Based on
repeatedly running of SVR–RBF model for different men-

123



M. M. R. Tabari, H. R. Z. Sanayei

Fig. 9 Comparison between
time series of observed and
predicted intermediate block
displacement using ANN–LM
model (testing stage)

Table 5 Comparison of different
SVR models to predict the
displacement of the intermediate
block of the dam crest

Model Kernel function type Train Validation Test

CORR MSE CORR MSE CORR MSE

SVR–RBF RBF 0.96 8.47 0.99 0.278 0.98 4.7

SVR–PoL POLYNOMIAL 0.67 61.78 0.7 52.81 0.73 31.42

SVR–Gau GAUSSIANRBF 0.55 95.15 0.4 94 0.49 73.7

SVR–Exp EXPONENTIALRBF 0.58 76.52 0.511 80.03 0.53 46.41

SVR–Lin LINEAR 0.59 73.97 0.67 59 0.56 47.75

Fig. 10 Comparison between
time series of observed and
predicted intermediate block
displacements using SVR–RBF
model (training stage)

tioned parameters, the optimal values of the user-defined
SVR–RBF parameters for C, ε, and γ are 32.35, 0.53, and
0.08, respectively. Figures 10 and 11 show the comparison
of the results of the simulation by SVR–RBF model and
the observed data in training and testing stages. Evaluation

of the predicted values of intermediate block displacement
by the SVR–RBF model shows that the MSE values in
training and testing stages are reduced to the 85.23 and
43.64%, respectively, compared to the ANN model (Table
6). These results indicate the relatively better performance
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Fig. 11 Comparison between
time series of observed and
predicted intermediate block
displacements using SVR–RBF
model (testing stage)

of SVR–RBF model compared to the ANN model for non-
linear systems modeling.

4.3 Assessment of the ability of SVR and ANN soft
models

In this section for overall assessment of the ability of SVR
and ANN models based on five defined error indicators, the
performance of two soft models in prediction of the displace-
ment of the intermediate block of the dam crest is compared
according to input parameters (i.e., the water level in the
reservoir and monthly temperature average) as shown in
Table 6.

Based on the ME index, it can be inferred that ANN–LM
model is overestimated in testing stage. The magnitude of
the ME index in ANN–LM model is higher than SVR–RBF
model which reflects the fact that this model gives lower
values for intermediate block displacement than the observed
values.

MAPE and MSE values also show that the SVR–RBF
model is better than the ANN–LM model. Moreover, NS
and CORR values of the SVR–RBF model are greater than
the ANN–LM model. Investigation of various error indices
presented inTable 6 shows that the SVR–RBFmodel predicts
the displacement of the intermediate block of the dam crest
better than the ANN–LM model.

In fact, the presented error indicators represent the aver-
age value of the errors of the soft models and accordingly
cannot provide an accurate assessment of the distribution of
errors. So, in this study, normal cumulative distribution func-
tions (CDFs) of observed and predicted intermediate block
displacement values in both training and testing stages are
presented for better assessment of two soft models (Figs. 12,

13). This approach was previously followed by Yoon et al.
(2011) for selection of the best model. Comparison of CDFs
shows that the amount of deviation of the CDF for ANN–LM
model is higher than SVR–RBF model particularly in the
training stage. The reason is due to the fact that the SVR–RBF
model is generally based on the structural risk minimiza-
tion (SRM) and the SRM minimizes the empirical risk and
complexity of model simultaneously which can improve the
ability of the SVR for regression problems. Therefore, the
SVR–RBF model can predict the dam stability with accept-
able accuracy only by measuring two parameters including
water level of the dam and the air temperature.

5 Conclusions

In this research, time series models were developed for pre-
diction of the dam crest displacement using support vector
regression and artificial neural network. In order to apply
ABAQUS simulation model, the Karaj dam thermal behav-
ior over a period of 8 years (2002–2009) was simulated under
different water levels in the reservoir and monthly average
temperature. Based on simulated data and in order to obtain
the nonlinear relationship between the crest displacement and
the average temperature of the reservoir dam, the capability
of SVR and ANN models to predict the displacement of the
dam crest was investigated. The results of different struc-
tures of the ANN to create described nonlinear relationship
show that the ANN–LM model has better performance and
fastest training time among five training algorithms. Based
on defined error indicators, it can be found that the accuracy
of predicted intermediate block displacements of ANN–LM
model is relatively low. In order to increase the accuracy of
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Table 6 Comparison of different
error indices for prediction of
the displacement of the
intermediate block of the dam
crest using ANN–LM and
SVR–RBF models

Error index Model

ANN–LM SVR–RBF

Train Validation Test Train Validation Test

NS 0.52 0.54 0.82 0.93 0.99 0.88

MAPE
(percentage)

34.54 22.83 18.15 9.35 3.99 17.2

ME (mm) 0.8 −0.29 1.11 0.13 0.001 −0.04

CORR 0.73 0.77 0.93 0.96 0.99 0.98

MSE (mm) 57.36 25.44 8.34 8.47 0.278 4.7

Fig. 12 Cumulative distribution
function (CDFs) of observed
and estimated intermediate
block displacement using SVR
model. a Training stage and b
testing stage
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Fig. 13 Cumulative distribution
function (CDFs) of observed
and estimated intermediate
block displacement using ANN
model. a Training stage and b
testing stage

the prediction, it was proposed to apply the support vector
regression as a model that has high accuracy for nonlinear
modeling. In this model, the appropriate parameters were
determined by trial-and-error method and the results were
compared with the ANN model. The evaluation of results
of ANN and SVR models with five error indicator shows
that the SVR model predicts better the intermediate block
displacement of the dam crest. Furthermore, comparison of
cumulative distribution function of observed and estimated
(using ABAQUS model) displacement values showed sig-
nificant differences between CDFs in ANNmodel compared
with the SVRmodel. This shows the inability of ANNmodel

to predict the intermediate block displacement of the dam
crest. The results of this paper can be used to develop the
optimal operation policy leading to increased stability of the
reservoir with minimum amount of displacement of the dam
crest. Also, the displacement of the dam crest for any given
period can be predicted by only measuring the air temper-
ature and the water level of the dam reservoir without any
need to re-simulate with ABAQUS model.
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