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9 Abstract In this study, the problem of adaptive fuzzy

10 wavelet network (FWN) control is investigated for non-

11 linear strict-feedback systems with unknown functions,

12 unknown virtual control gains and unknown input satura-

13 tion. An adaptive FWN as an adaptive nonlinear-in-pa-

14 rameter approximator is proposed to represent the model of

15 the unknown functions. Saturation nonlinearity is described

16 by the dead-zone operator-based model which does not

17 require the bound of the saturated input to be known. Then,

18 a novel control scheme is designed based on the adaptive

19 FWN, the saturation model and the dynamic surface con-

20 trol approach. The proposed control scheme does not

21 require any prior knowledge about input saturation,

22 unknown dynamics and unknown virtual control gains. It

23 simultaneously eliminates the ‘‘explosion of complexity’’

24 and ‘‘curse of dimensionality’’ problems; also, the design

25 approach avoids the controller singularity problem com-

26 pletely without using projection algorithm. The stability

27 analysis is studied using Lyapunov theorem; it shows that

28 all signals of the resulting closed-loop system are uni-

29 formly ultimately bounded and the tracking error can be

30 made small by proper selection of the design parameters.

31 Comparing the simulation results of the proposed

32 scheme with other control methods demonstrates the

33 effectiveness and superior performance of the proposed

34 scheme.35

36 Keywords Adaptive fuzzy wavelet network � Dynamic

37 surface control � Uncertain strict-feedback nonlinear

38system � Nonlinear-in-parameter approximator � Input

39saturation

401 Introduction

41Input saturation is one of the most important non-smooth

42nonlinear input constraints that usually appears in various

43practical systems such as electrical machines [1], robot

44manipulators [2], autonomous underwater vehicle [3, 4],

45MEMS [5, 6] and spacecraft [7, 8]. The presence of such

46nonlinearity should be explicitly considered in the control

47design schemes; otherwise, it may result in undesirable

48properties such as inaccuracy and degradation of the con-

49trol performance or even, it may lead to instability of the

50closed-loop system. On the other hand, the most of prac-

51tical control systems have nonlinear and uncertain beha-

52viour [9]. Therefore, control of nonlinear uncertain systems

53with input saturation has attracted more attention, recently

54[10–17]. To compensate the saturation constraint in non-

55linear systems, various robust and adaptive schemes have

56been developed, such as model predictive control [14],

57variable structure control [15], robust H1 control [16] and

58quantitative feedback theory [17].

59Among the developed approaches, adaptive approxi-

60mator-based backstepping techniques provide a systematic

61framework for designing of the control schemes [18]. They

62invoke conventional approximators such as neural net-

63works (NNs) or fuzzy systems (FSs) to approximate the

64unknown functions of the system, and then, they employ

65adaptive techniques to provide systematic framework for

66controller design [13, 19–26]. So, they can handle a large

67class of uncertain nonlinear systems that their uncertainty

68does not satisfy the matching condition, or cannot be
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69 linearly parameterized. Also, it is applicable to the cases

70 that their uncertainty is completely unknown [27–31].

71 However, the aforementioned schemes based on the

72 backstepping technique require the reference signal and its

73 time derivatives up to nth order to be continuous and

74 bounded; also, they suffer from two main difficulties. The

75 first one is the ‘‘explosion of complexity’’ problem which is

76 arisen because of repeated differentiations of nonlinear

77 functions that appear in the design of virtual control inputs

78 at each step. The other one is the ‘‘curse of dimensionality’’

79 which is arisen due to using NNs or FSs as a linear-in-

80 parameter (LIP) approximator.

81 To overcome the ‘‘explosion of complexity’’ problem,

82 the dynamic surface control (DSC) technique was proposed

83 in [32]. It introduces a first-order low-pass filter at each

84 step of the backstepping design procedure to avoid

85 appearing of repeated derivatives of virtual control inputs

86 and consequently to avoid ‘‘explosion of complexity’’

87 problem. Recently, some advanced DSC designs have been

88 proposed. In [33], adaptive DSC scheme was proposed for

89 a class of strict-feedback nonlinear systems with mis-

90 matched parametric uncertainties, where a composite

91 learning scheme is used to update parametric uncertainties.

92 A command-filtered backstepping adaptive control was

93 proposed for a class of strict-feedback nonlinear systems

94 with functional uncertainties in [34]. It proposes NN

95 composite learning technique to guarantee convergence of

96 NN weights to their ideal values without the persistent

97 excitation condition. Design of composite adaptive DSC

98 based on online recorded data was proposed in [35]. It uses

99 both of tracking and prediction errors to update parametric

100 estimates. Also, some of existing papers [36–40] have been

101 proposed DSC-based control scheme for uncertain non-

102 linear systems with input saturation. In [36], a Gaussian

103 error function-based saturation model was proposed and

104 the Nussbaum-type gain function was used to deal with the

105 unknown control direction. In [37], a hyperbolic tangent-

106 based saturation model was used and a nonlinear distur-

107 bance observer was designed to estimate the effect of the

108 disturbance. A Gaussian error-based model was proposed

109 to describe the asymmetric saturation nonlinearity in [38],

110 and then, a DSC-based control scheme was developed.

111 Also, fuzzy-based DSC schemes were developed for

112 uncertain nonlinear systems with input saturation in

113 [39, 40].

114 The proposed works in [36–40] remedy the ‘‘explosion

115 of complexity’’ problem, but they have two limitations.

116 The first one is the need for the known bound of the sat-

117 urated input, and the second one is the ‘‘curse of dimen-

118 sionality’’ problem.

119 To overcome the first limitation, a dead-zone operator-

120 based model was introduced to describe the saturation

121 constraint and to develop adaptive backstepping controller

122for a class of nonlinear systems [41]. The considered sys-

123tem in [41] is not in the strict-feedback form; also, it does

124not solve the singularity problem. In [5], the stabilization

125problem of spacecraft rendezvous in the presence of the

126input saturation was investigated. In [42], a novel three-

127dimensional law based on input-to-state stability and non-

128linear robust H1 filtering was proposed for interception of

129manoeuvring targets in the presence of input saturation.

130The robust constrained control was designed for MIMO

131nonlinear systems in [43]. In [5, 42, 43], it is assumed that

132the dynamics of the system and the virtual control gains are

133known and so, they do not use approximator-based control

134approach. The dead-zone model-based DSC control

135scheme was developed for stochastic nonlinear systems in

136[44]. However, the singularity problem and ‘‘curse of

137dimensionality’’ problems have not been solved.

138The second limitation or ‘‘curse of dimensionality’’

139problem is the result of using NNs or FSs as a LIP

140approximator to approximate unknown functions. When

141NNs or FSs are used as LIP approximators, the number of

142basis functions grows rapidly as the dimension of the

143argument vector of the functions increases. It results in a

144large number of basis functions, adjustable parameters and

145leads to large structure. Large structure requires long

146learning time and high computational load that make it a

147time-consuming process. Therefore, complexity of the

148controller grows drastically as the order of the system

149increases. Furthermore, as Barron shown in [45], the LIP

150approximator has integrated square approximation error of

151order Oð1=NÞ2=n while the nonlinear-in-parameter (NIP)

152approximator has integrated square approximation error of

153order Oð1=NÞ where N is the number of basis functions and

154n is the dimension of the input to the function [45]. As it is

155inferred, the bound of the approximation error depends on

156n. So, in order to achieve the same approximation error for

157the same type of functions (to be approximated with

158dimension n[ 2), the LIP approximator requires more

159basis functions and this leads to ‘‘curse of dimensionality’’,

160while for the same accuracy of approximation, the NIP

161approximator uses less number of basis functions than the

162LIP approximator and it can better avoid the curse of

163dimensionality problem [46]. So, compared with the LIP

164approximators, the NIP approximators can achieve the

165same quality of approximation with a smaller size of net-

166work, especially for higher-dimensional functions. In other

167words, the NIP approximator can achieve better quality of

168approximation with the same size of LIP approximator.

169In this work, in order to avoid the ‘‘curse of dimen-

170sionality’’ problem (which is inevitable in the LIP

171approximator-based control schemes) and to avoid the

172singularity problem, the FWN as an adaptive NIP

173approximator is proposed to approximate unknown terms
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174 of the system without any prior knowledge about the

175 unknown functions and control gains. For the same

176 approximation accuracy, application of the FWN as a NIP

177 approximator is more simple than the LIP approximator

178 (like FSs or NNs) in terms of the size, structure and number

179 of parameters. However, theoretical analysis of the LIP

180 approximator is simpler than the NIP one.

181 In the traditional adaptive fuzzy control, the consequent

182 parts of the TSK-type fuzzy rules are represented by either

183 a constant or a linear function of the input variable and a

184 constant term. These consequent parts do not provide full

185 mapping capabilities. TSK-type fuzzy systems do not have

186 localizability. They model the global features of the pro-

187 cess, and their convergence is generally slow. Also, they

188 require a high number of rules for modelling of complex

189 nonlinear processes with the desired accuracy. Increasing

190 the number of the rules increases the number of neurons of

191 the network. While, fuzzy wavelet network is a combina-

192 tion of fuzzy logic, wavelet theory and neural network.

193 Contrary to the traditional TSK-type fuzzy networks, FWN

194 uses wavelet functions in the consequent part of fuzzy rules

195 and it can take advantages of the rigorous approximation

196 theory of wavelet basis function expansion. Wavelet is a

197 nonlinear function of input variables that analyse non-sta-

198 tionary signals and reveals their local details. Fuzzy logic

199 reduces the complexity of the data and deals with uncer-

200 tainty. Neural networks have self-learning characteristics

201 that increase the accuracy of the model. So, their combi-

202 nation develops a system with fast learning capability that

203 can describe uncertain nonlinear systems [47, 48].

204 This work proposes a dead-zone operator-based adap-

205 tive fuzzy wavelet dynamic surface control scheme for a

206 class of uncertain nonlinear systems with unknown control

207 gains and unknown input saturation. A dead-zone operator-

208 based model is proposed to describe the saturation non-

209 linearity with unknown saturation bound. Adaptive FWN

210 as an adaptive NIP approximator is proposed to model

211 uncertain nonlinear dynamics. Then, the DSC approach is

212 applied to develop a systematic design procedure for con-

213 troller design. Stability analysis shows that all signals of

214 the closed-loop system are uniformly ultimately bounded

215 and the tracking error can be made small by the proper

216 selection of the design parameters. The main contributions

217 of this work are summarized as:

218 • Unlike the most of the existing schemes that use NNs or

219 FSs as an adaptive LIP approximator, the proposed

220 approach uses adaptive FWN as a NIP approximator

221 and design adaptive learning laws to tune all of linear

222 and nonlinear parameters of the network. So, it avoids

223 the ‘‘curse of dimensionality’’ problem which is

224 unavoidable in the adaptive LIP approximator-based

225 control schemes developed in [18, 27–31, 36–40].

226• Unlike [5, 38, 39, 43, 44], in this work, the virtual

227control gains are assumed to be unknown. Furthermore,

228the proposed design strategy avoids the singularity

229problem which has not been solved in many of the

230existing papers like [41, 44].

231• Because of using DSC approach, the proposed

232scheme avoids the ‘‘explosion of complexity’’ problem

233which is inevitable in the backstepping-based schemes

234as in [18, 27–31].

235• To eliminate the known bound assumption of the

236saturated input that exists in some of the existing works

237like [18, 36–40], a dead-zone operator-based model is

238employed to describe the saturation nonlinearity. Fur-

239thermore, the dead-zone model-based description

240describes various kinds of saturation such as hard-limit

241saturation and soft-limit saturation and it does not

242require the exact model of the input saturation.

243The rest of this paper is organized as follows. Problem

244statement is stated in Sect. 2. Section 3 describes the FWN,

245briefly. Section 4 is devoted to the design of the proposed

246scheme, and it presents the main theorem. In Sect. 5,

247simulation and comparison results are presented to show

248the effectiveness and superior performance of the proposed

249scheme. Concluding remarks are given in Sect. 6. Finally,

250stability analysis of the closed-loop system is provided in

251‘‘Appendix A’’.

2522 Problem Statement

253Consider a class of uncertain strict-feedback nonlinear

254systems with input saturation in the following form:

_xi ¼ fiðxiÞ þ giðxiÞxiþ1; 1� i� n� 1

_xn ¼ fnðxnÞ þ gnðxnÞuðvÞ

y ¼ x1

ð1Þ

256256where xi ¼ ½ x1 x2 . . . xi �
T 2 Ri, i ¼ 1; 2; . . .; n, is the

257state vector, y 2 R is the output variable; function terms

258fiðxiÞ : R
i ! R and giðxiÞ : R

i ! R ði ¼ 1; 2; . . .; nÞ are

259unknown smooth nonlinear functions, gi called the control

260gain function. v 2 R is the control input and uðvÞ 2 R is the

261saturated control input described as:

uðvÞ ¼
signðvÞusat; vj j � usat
v; vj j\usat

�

ð2Þ

263263where usat is an unknown constant parameter. In this work,

264it is assumed that all state variables of the system (xi,

265i ¼ 1; 2; . . .; n) are measurable.

266Remark 1 The relationship between the applied control

267input u and the desired control input v has two sharp cor-

268ners at v ¼ usat and v ¼ � usat. So, the backstepping and the

AQ2

M. Shahriari-Kahkeshi: Dead-Zone Model-Based Adaptive Fuzzy Wavelet Control for Nonlinear Systems Including Input…

123
Journal : Large 40815 Dispatch : 20-6-2018 Pages : 19

Article No. : 515
h LE h TYPESET

MS Code : IJFS-D-17-00702 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

269 DSC techniques cannot be directly applied to design the

270 controller.

271 To deal with the saturation nonlinearity, the dead-zone

272 operator-based model [41] is used to model the saturation

273 function. This model is

uðvÞ ¼ q0v�

Z

R

0

qðrÞdzrðvÞdr ð3Þ

275275 where qðrÞ is a density function that satisfies

276 0� qðrÞ� qmax for r[ 0 and qðrÞ ¼ 0 for r[R; also,

277

R1
0

rqðrÞdr\1, and q0 ¼
R R

0
qðrÞdr is a positive constant,

278 and dzrðvÞ : R ! R is dead-zone operator that is defined as

279 dzrðvÞ ¼ maxðv� r;minð0; vþ rÞÞ: Also, the saturated

280 value usat is obtained as follows:

usat ¼ lim
v!1

u ¼ lim
v!1

q0v�

Z

R

0

qðrÞdzrðvÞdr

0

@

1

A ð4Þ

282282 Since limv!1 dzrðvÞ ¼ limv!1 maxðv� r;minð0;ð

283 vþ rÞÞ ¼ v� r, so saturated value in (4) is calculates by

usat ¼ lim
v!1

q0v�

Z

R

0

qðrÞðv� rÞdr

0

@

1

A

¼ lim
v!1

Z

R

0

qðrÞv� qðrÞðv� rÞð Þdr

¼ lim
v!1

Z

R

0

qðrÞrdr

ð5Þ

285285It is worth to note that different types of density functions

286that satisfy the mentioned properties can be used to model

287various forms of saturation nonlinearities.

288In order to show the capabilities of the dead-zone

289operator-based model for describing saturation nonlinear-

290ity, an example is given. For this, consider the saturation

291nonlinearity (2) with usat ¼ 2:5 and the following qðrÞ:

qðrÞ ¼
0:2 0� r�R ¼ 5

0 r� 5

�

ð6Þ

293293Dead-zone operator dzrðvÞ is shown in Fig. 1a; as it is seen

294from Fig. 1a, we have

Fig. 1 a Dead-zone operator, b dead-zone operator-based model and saturation nonlinearity

International Journal of Fuzzy Systems

123
Journal : Large 40815 Dispatch : 20-6-2018 Pages : 19

Article No. : 515
h LE h TYPESET

MS Code : IJFS-D-17-00702 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

dzrðvÞ ¼
vþ r v\� r

0 � r� v� r

v� r v[ r

8

<

:

296296 Now, by substituting dzrðvÞ into dead-zone operator-based

297 model (3), uðvÞ is obtained. Output of the dead-zone opera-

298 tor-based model and saturation nonlinearity are shown in

299 Fig. 1b. As it is seen from Fig. 1b, the output of dead-zone

300 operator-basedmodel reaches the saturated values usat ¼ 2:5

301 at R ¼ 5. This verifies the capability of the dead-zone

302 operator-basedmodel to describe the saturation nonlinearity.

303 Now, considering (3), the nonlinear system (1) can be

304 rewritten as:

_xi ¼ fiðxiÞ þ giðxiÞxiþ1; 1� i� n� 1

_xn ¼ fnðxnÞ þ bðxnÞv� gnðxnÞ

Z

R

0

qðrÞdzrðvÞdr

y ¼ x1

ð7Þ

306306 where bðxnÞ ¼ q0gnðxnÞ.

307 Remark 2 Because of using the dead-zone operator-based

308 model for saturation description, the saturation nonlinearity

309 is represented in continuous differentiable form such that

310 the DSC technique can be applied.

311 Assumption 1 The desired trajectory yd is a sufficiently

312 smooth function of t and yd, _yd and €yd are bounded, i.e.

313 there exists a known positive constant B such that the set

314 P :¼ yd; _yd; €ydð Þ : y2d þ _y2d þ €y2d �B
� �

is compact [32].

315 Assumption 2 The sign of gi, i ¼ 1; 2; . . .; n is known.

316 Furthermore, there exist positive constants gli and ghi such

317 that gli � gij j � ghi. Without losing generality, it is assumed

318 that gli, i ¼ 1; 2; . . .; n, is a positive constant.

319 Assumption 3 There exists a known positive constant gdi ,

320 i ¼ 1; 2; . . .; n such that _gið:Þj j � gdi in the compact set Xi.

321 Remark 3 Assumptions 2 and 3 imply that gn and _gn are

322 bounded. Furthermore, from the description of the dead-

323 zone operator-based model q0 is a positive constant. So, it

324 is reasonable to conclude that bðxnÞ satisfies

325 bl � bðxnÞj j � bh and _bðxnÞ
�

�

�

�� bd:

326 The control objective is to design a dead-zone operator-

327 based adaptive fuzzy wavelet dynamic surface control

328 scheme such that the system output y tracks a desired tra-

329 jectory yd, and all signals of the closed-loop system remain

330 uniformly ultimately bounded. Furthermore, the tracking

331 error can be arbitrarily made small by proper selection of

332 the design parameters.

333 Before the design of the proposed scheme, a brief

334 description of the FWN as an adaptive NIP approximator is

335 presented in the following section.

3363 Fuzzy Wavelet Network as an Adaptive NIP

337Approximator

338In this work, FWN is used as an adaptive NIP approximator

339to approximate the unknown continuous functions hiðziÞ :

340Ri ! R; i ¼ 1; . . .; n by a set of N fuzzy rules in the

341following form [48]:

Rule j : If z1 is A
j
1; . . . and zi is A

j
i ;

Then h
j
i ¼ h

j
i

Y

i

k¼1

uðxkjðzk � ckjÞÞ
ð8Þ

343343where j ¼ 1; 2; . . .;N, i ¼ 1; 2; . . .; n, z1; . . .; zi are the input

344variables of the network, h
j
i is the output variable of the jth

345rule, h
j
i 2 R is the weight of the network, uðxkjðzk � ckjÞÞ

346is a wavelet function that is obtained from translation and

347dilation of the single mother wavelet function; also, A
j
i

348represents the linguistic term that is characterized by the

349Gaussian-type fuzzy membership function as:

l
A

j

i

ðziÞ ¼ exp �ðxijðzi � cijÞÞ
2

� �

ð9Þ

351351where xij and cij denote the inverse of width and centre of

352the Gaussian membership function that are chosen as the

353same as dilation and translation parameters of wavelet

354functions, respectively. Combination of the firing strength

355of the jth rule as
Qi

k¼1 lA j

k

ðzkÞ and wavelet function

356
Qi

k¼1 uðxkjðzk � ckjÞÞ forms the jth fuzzy wavelet basis

357function wj as [48]:

wj zi; cj;xj

� 	

¼
Y

i

k¼1

exp � xkj zk � ckj
� 	� 	2

� �

 !

�
Y

i

k¼1

u xkj zk � ckj
� 	� 	

 ! ð10Þ

359359The output of the above FWN is computed as:

hi zi; ci;xi; hið Þ ¼
X

N

j¼1

h
j
iwj zi; ci;xið Þ ð11Þ

361361where i ¼ 1; 2; . . .; n, ci ¼ ci1; ci2; . . .; ciN½ �T2 RN is the

362translation parameter vector and xi ¼ xi1;xi2; . . .;xiN½ �T2

363RN is the dilation parameter vector. For simplicity, the

364output of FWN in (11) is expressed as:

hi zi; ci;xi; hið Þ ¼ hTi wj zi; ci;xið Þ ð12Þ

366366where wj ¼ w1; . . .;wN½ �T2 RN denote the vector of the

367fuzzy wavelet basis functions and hi ¼ h1i ; . . .; h
N
i


 �T
2 RN

368is the weight vector.

369According to the universal approximation property, the

370FWN can approximate any continuous function hiðziÞ
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371 defined over a compact set Xzi
� Ri to any arbitrary

372 accuracy d	i [48]. So, there exist an ideal weight vector h	i
373 and ideal dilation and translation vectors x	

i and c
	
i such

374 that

hi zið Þ ¼ h	Ti w zi; c
	
j ;x

	
j

� �

þ d	i zið Þ ð13Þ

376376 where d	i zið Þ is the approximation error that satisfies

377 d	i zið Þ
�

�

�

�� �di [48]. According to the universal approxima-

378 tion theorem, h	i ; c
	
i ;x

	
i are bounded. So, the ideal param-

379 eter vectors are norm bounded.

380 Assumption 4 The norm of the ideal parameter vectors is

381 bounded; so, there exist unknown constants �hi, �ci and �xi

382 such that h	Ti h	i �
�hi, c

	T
i c

	
i � �ci and x	T

i x	
i � �xi. However,

383 the ideal parameters are unknown. So, it is necessary to

384 estimate them. In the following, ĥi, ĉi and x̂i denote the

385 estimation of ideal parameters h	i , c
	
i and x	

i , respectively.

386 So, the approximated function is defined as:

ĥi zið Þ ¼ ĥ
T

i wj zi; ĉj; x̂j

� 	

ð14Þ

388388 The structure of the FWN is shown in Fig. 2.

389In the following, for ease of notation, ideal and

390
estimated basis functions wj xi; c

	
j ;x

	
j

� �

and wj xi; ĉj; x̂j

� 	

391are represented by w	
j and ŵj, respectively.

392Remark 4 It must be noted that the designed adaptive

393FWN as a NIP approximator can be used in both online and

394off-line applications. However, in this work, it is used

395online and requires no prior knowledge or off-line learning

396and all of its parameters are adjusted online based on the

397adaptive laws.

3984 Design of the Proposed Control Scheme

399In this section, in order to avoid the problems of ‘‘explosion

400of complexity’’ and ‘‘curse of dimensionality’’, the pro-

401posed adaptive FWN-based DSC scheme is designed for

402the uncertain nonlinear system (7) in the presence of input

403saturation. The design procedure is described as follows:

404Step 1 The first error surface or tracking error is defined

405as:

Fig. 2 Structure of the adaptive fuzzy wavelet network
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e1 ¼ y� yd ð15Þ

407407 Invoking (7) and differentiating (15) with respect to time

408 yields:

_e1 ¼ f1 þ g1x2 � _yd ð16Þ

410410 Assuming x2 as a virtual control input, the desired feedback

411 control is designed as:

v	2 ¼ �k1e1 �
1

g1
f1 � _ydð Þ ð17Þ

413413 where k1 is a positive design constant; Since g1 and f1 are

414 unknown smooth functions of x1, the desired feedback

415 control input v	2 in (17) cannot be implemented in practice.

416 Let us define h1ðz1Þ ¼ 1=g1ð Þ f1 � _ydð Þ where z1 ¼

417 ½x1; _yd�
T
and employ adaptive FWN to approximate h1ðz1Þ.

418 Considering (13), v	2 in (16) can be expressed as:

v	2 ¼ �k1e1 � h	T1 w z1; c
	
1;x

	
1

� 	

� d	1 ð18Þ

420420 Since the ideal parameters h	1; c
	
1; x	

1 and the approxi-

421 mation error d	1 are unknown, the virtual control law is

422 proposed as:

v2 ¼ � k1e1 � ĥ
T

1w z1; ĉ1; x̂1ð Þ ð19Þ

424424 where ĥ1; ĉ1; x̂1 are the estimations of h	1; c
	
1; x	

1 which

425 are adjusted by:

_̂
h1 ¼ c1 ŵ1 � AT

1 x̂1 � BT
1 ĉ1

� �

e1 � rĥ1

� �

_̂c1 ¼ c2 B1ĥ1e1 � rĉ1

� �

_̂x1 ¼ c3 A1ĥ1e1 � rx̂1

� �

ð20Þ

427427 where A1 ¼
ow1

ox1

� ��

�

�

x1¼x̂1

and B1 ¼
ow1

oc1

� ��

�

�

c1¼ĉ1

, c1, c2 and

428

429 c3 are learning parameters and r[ 0 is a design parameter.

430 To avoid repeated differentiating of v2 which leads to

431 the ‘‘explosion of complexity’’ problem, the DSC tech-

432 nique is employed. Let v2 pass through the first-order filter

433 with time constant s2 :

s2 _v2f þ v2f ¼ v2 ; v2f ð0Þ ¼ v2ð0Þ ð21Þ

435435 Defining e2 ¼ x2 � v2f and g2 ¼ v2f � v2 results in

436 x2 ¼ e2 þ g2 þ v2. So, (16) can be written as:

_e1 ¼ f1 þ g1ðe2 þ g2 þ v2Þ � _yd

¼ g1h1 þ g1ðe2 þ g2 þ v2Þ

¼ g1 e2 þ g2 � k1e1 þ ~h1
� 	

ð22Þ

438438 where ~h1 ¼ h	T1 w	
1 þ d	1 � ĥ

T

1 ŵ1 is the approximation error.

439 Differentiating g2 with respect to time and substituting

440 (21) in it and using g2 ¼ v2f � v2 results in:

_g2 ¼ _v2f � _v2 ¼
v2 � v2f

s2
� _v2 ¼ �

g2
s2

�
ov2

oe1
_e1 þ

ov2

ow1

ow1

ox1
_x1 þ

ov2

ow1

ow1

oyd
_yd

�

þ
ov2

ow1

ow1

oĥ1

_̂
h1�

ov2

ow1

ow1

oĉ1

_̂c1 �
ov2

ow1

ow1

ox̂1

_̂x1



¼ �
g2
s2

þM2 e1; e2; g2; ĥ1; ĉ1; x̂1; yd; _yd

� �

ð23Þ

442442where M2ð:Þ is a continues function. For any B and p, the

443
sets P :¼ yd; _yd; €ydð Þ : y2d þ _y2d þ €y2d �B

� �

and P1 :¼

444
e21 þ e22 þ g22 þ

~h
T

1
~h1 þ ~c

T
1 ~c1 þ ~xT

1 ~x1 � 2p
n o

are compact

445in R3 and R3Nþ3, respectively. Thus, P�P1 is also

446compact. Considering continuous property, the function

447M2ð:Þ has a maximum bound �M2 for the given initial

448condition in the compact set P�P1 [21].

449Step i (2� i� n� 1): In the ith step, the ith error surface

450is defined as

ei ¼ xi � vif ð24Þ

452452where vif 2 R is obtained from the step i� 1. Considering

453(7) and differentiating ei with respect to time results in:

_ei ¼ fi þ gixiþ1 � _vif ð25Þ

455455Assuming xiþ1 as a virtual control input, the desired

456feedback control v	iþ1 is designed as:

v	iþ1 ¼ �kiei �
1

gi
fi � _vif
� 	

ð26Þ

458458where ki is a positive design parameter, fi and gi are

459unknown smooth functions of xi. Let us define hiðziÞ ¼

4601=gið Þ fi � _vif
� 	

with zi ¼ ½xi; _vif �
T

where

461xi ¼ ½x1; x2; . . .; xi�
T
. By applying adaptive FWN to

462approximate hiðziÞ and considering (13), v	iþ1 in (26) can be

463written as

v	iþ1 ¼ � kiei � h	Ti w zi; c
	
i ;x

	
i

� 	

� d	i ð27Þ

465465Since ideal parameters h	i ; c
	
i ;x

	
i and approximation error

466d	i are unknown, the virtual control law is proposed as

viþ1 ¼ � kiei � ĥ
T

i w zi; ĉi; x̂ið Þ ð28Þ

468468where ĥi; ĉi; x̂i denote the estimation of h	i ; c
	
i ; x	

i which

469are adjusted by the following adaptive learning laws

M. Shahriari-Kahkeshi: Dead-Zone Model-Based Adaptive Fuzzy Wavelet Control for Nonlinear Systems Including Input…

123
Journal : Large 40815 Dispatch : 20-6-2018 Pages : 19

Article No. : 515
h LE h TYPESET

MS Code : IJFS-D-17-00702 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

_̂
hi ¼ c1 ŵi � AT

i x̂i � BT
i ĉi

� �

ei � rĥi

� �

_̂ci ¼ c2 Biĥiei � rĉi

� �

_̂xi ¼ c3 Aiĥiei � rx̂i

� �

ð29Þ

471471
where Ai ¼

owi

oxi

� ��

�

�

xi¼x̂i

, Bi ¼
owi

oci

� ��

�

�

ci¼ĉi

. Let viþ1 pass

472 through the first-order filter with time constant siþ1 as

siþ1 _vðiþ1Þf þ vðiþ1Þf ¼ viþ1 ; vðiþ1Þf ð0Þ ¼ viþ1ð0Þ ð30Þ

474474 Defining eiþ1 ¼ xiþ1 � vðiþ1Þf and giþ1 ¼ vðiþ1Þf � viþ1

475 gives xiþ1 ¼ eiþ1 þ giþ1 þ viþ1. So, (25) can be written as

_ei ¼ fi þ giðeiþ1 þ giþ1 þ viþ1Þ � _vðiþ1Þf

¼ gihi þ giðeiþ1 þ giþ1 þ viþ1Þ

¼ giðeiþ1 þ giþ1 � kiei þ ~hiÞ

ð31Þ

477477 where ~hi ¼ h	Ti w	
i þ d	i � ĥ

T

i ŵi is the approximation error.

478 Differentiating giþ1 with respect to time and substituting

479 (30) in it and using giþ1 ¼ vðiþ1Þf � viþ1 results in:

_giþ1 ¼ _vðiþ1Þf � _v1þ1 ¼�
giþ1

siþ1

�
oviþ1

oei
_eiþ

X

i

j¼1

oviþ1

owj

owj

oxj
_xjþ

oviþ1

owj

owj

o _vðjþ1Þf
€vðjþ1Þf

  

þ
oviþ1

owj

owj

oĥj

_̂
hjþ

oviþ1

owj

owj

oĉj

_̂cjþ
oviþ1

owj

owj

ox̂j

_̂xj

!!

¼�
giþ1

siþ1

þMiþ1ð:Þ

ð32Þ

481481 where Miþ1ð:Þ is a continues function and has a maximum

482 bound �Miþ1 [21].

483Step n In the final step, the actual control input v will be

484deigned. The error surface is defined as

en ¼ xn � vnf ð33Þ

486486where vn is obtained from the step n� 1. Let

487qkðrÞ :¼ qðrÞ=q0; then, the time derivative of en is

_en ¼ _xn � _vnf ¼ bvþ fn � _vnf � b

Z

R

0

qkðrÞdzrðvÞdr ð34Þ

489489The ideal control input is constructed as

v	 ¼ �
1

b
fn � _vnf
� 	

� knen þ

Z

R

0

qkðrÞdzrðvÞdr ð35Þ

491491where kn[ 0 is a design parameter and fn; gn, b and qkðrÞ

492are unknown. Let us define hnðznÞ ¼
1
b

fn � _vnf
� 	

where

493zn ¼ ½xn; _vnf �
T
and xn ¼ ½x1; x2; . . .; xn�

T
. Considering (13),

494the ideal control input is designed as

v	 ¼ � h	Tn w zn; c
	
j ;x

	
j

� �

� d	n znð Þ � knen

þ

Z

R

0

qkðrÞdzrðvÞdr ð36Þ

496496Since ideal parameters c	n ; x
	
n; h

	
n and qkðrÞ are unknown,

497it is not possible to implement the ideal control input v	.

498So, the actual control input v is proposed as

v ¼ � ĥ
T

nw zn; ĉn; x̂nð Þ � knen þ

Z

R

0

q̂kðr; tÞdzrðvÞdr ð37Þ

500500where ĉn; x̂n; ĥn and q̂kðr; tÞ denote the estimation of

virtual 

input 

(19)

Adaptive laws 

(20)

First order 

filter (21) 

-

+ +

- virtual 

input  

(28)

Adaptive laws

(29)

First 

order 

filter (30) +

System (7) 
Control 

input 

(37) 

-

+

Adaptive laws 

(38)

-

Fig. 3 Block diagram of the proposed controller
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501 c
	
n ; x

	
n; h

	
n and qkðrÞ, respectively, and they are adjusted

502 based on the following adaptive learning laws

_̂
hn ¼ c1 ŵn � AT

n x̂n � BT
n ĉn

� �

en � rĥn

� �

_̂cn ¼ c2 Bnĥnen � rĉn

� �

_̂xn ¼ c3 Anĥnen � rx̂n

� �

o

ot
q̂kðt; rÞ ¼ cq �endzrðvÞ � rqq̂kðt; rÞ

� 	

ð38Þ

504504 where cq and rq are the design parameters,

505
An ¼

own

oxn

� ��

�

�

xn¼x̂n

, Bn ¼
own

ocn

� ��

�

�

cn¼ĉn

. Considering (38), the

506 error dynamics in (34) is obtained as

_en ¼ b � knen þ

Z

R

0

q̂kðr; tÞ � qkðrÞð ÞdzrðvÞdr þ ~hn

0

@

1

A

ð39Þ

508508where ~hn ¼ h	Tn w	
n þ d	n � ĥ

T

n ŵn is the approximation

509error.The block diagram of the proposed scheme is shown

510in Fig. 3. Also, the following theorem summarizes the

511design of proposed controller.

512Theorem 1 Consider the class of strict-feedback non-

513linear system (1) with the input saturation and dynamic

514uncertainties. The dead-zone operator-based model (3) is

515used to describe the saturation nonlinearity and the

Fig. 4 Uncertain functions hiðziÞ for i ¼ 1; 2; 3 and their estimation using LIP and NIP approximator, a h1ðz1Þ and its approximation, b h2ðz2Þ
and its approximation, c h3ðz3Þ and its approximation
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516 adaptive FWN as an adaptive NIP approximator is

517 designed to model the unknown terms of the system in the

518 controller design. Given any positive number p, for all

519
initial conditions satisfying Pn :¼

P

n�1

i¼1

1
gi
e2i þ

1
c1
~h
T

i
~hiþ

�

520
1
c2
~c
T
i ~ciþ

1
c3
~xT
i ~xiÞþ

1
b
e2nþ

Pn�1
i¼1 g

2
iþ1þ

1
cq

R R

0
~q2kðr;tÞdr �2p the

521 proposed scheme guarantees that all signals of the closed-

522 loop system are uniformly ultimately bounded. Further-

523 more, the tracking error can be made small by proper

524 choice of the design parameters.

525 Proof Proof of Theorem 1 is presented in ‘‘Appendix A’’.

526 Remark 5 To implement the control law (37), the integral

527 term is approximated as

Z

R

0

q̂kðr; tÞdzrðvÞdr ffi
X

M

i¼1

q̂kðiDr; tÞDr ð40Þ

529529 in which Dr is a step size and M ¼ R=Dr. Small values of

530 Dr result in accurate estimation of integral term, but they

531 require more computation [41]. Therefore, there is a trade

532 of between approximation accuracy and computational

533 complexity.

534 Remark 6 Considering zi ¼ ½xi; _vif �
T

for 2� i� n, the

535 dimension of the input argument of the function hiðziÞ is

536 greater than 2; So, to achieve the same approximation

537 accuracy for the same function hiðziÞ, the LIP approximator

538 requires more basis functions than the proposed FWN as a

539 NIP approximator. Therefore, applying the LIP approxi-

540 mator leads to the increase in the size and adjustable pa-

541 rameters of the controller and consequently results in the

542 ‘‘curse of dimensionality’’ problem.

543 Remark 7 It is worth to note that the bound of Miþ1ð:Þ for

544 i ¼ 1; . . .; n� 1 is only required for stability analysis of the

545 closed-loop system and design of the proposed controller

546 does not require estimating its maximum value.

547 5 Simulation Results

548 In this section, the one-link manipulator with a brush DC

549 motor is considered to illustrate the effectiveness and

550 performance of the proposed scheme. Simulation and

551 comparison results are provided to confirm the effective-

552 ness and superior performance of the proposed scheme.

553 The dynamic model of the considered system is given by

554 the following differential equations [49]:

D€qþ B _qþ N sinðqÞ ¼ I

Mm
_I þ HmI ¼ E � Km _q

�

ð41Þ

556556 where q, _q and €q denote the link angular position, velocity

557and acceleration, respectively. I is the motor current and E

558is the input voltage. The parameter values with appropriate

559units were set to D ¼ 1, Mm ¼ 0:1, B ¼ 1, Km ¼ 10, Hm ¼

5600:5 and N ¼ 10 [37]. Let us define x1 ¼ q, x2 ¼ _q, x3 ¼ I,

561u ¼ E, and y ¼ q. Considering the input saturation, the

562state-space model of (41) can be expressed as

_x1 ¼ x2

_x2 ¼ �N sinðx1Þ � Bx2ð Þ=Dþ ð1=DÞx3

_x3 ¼ �Kmx2 � Hx3ð Þ=M þ ð1=MÞuðvÞ

y ¼ x1

ð42Þ

564564where the saturation nonlinearity uðvÞ is described by (2)

565and usat ¼ 50.

566To show the effectiveness of the proposed controller, the

567proposed scheme in this work, the conventional DSC

568controller and the NN-based DSC approach [37] were

569applied to (42). In the following, each scheme is explained.

570However, for the conventional controller, the saturation

571phenomenon in (42) has not been considered.

572• The proposed controller

573The first step for designing the proposed controller is to

574construct adaptive FWN as an adaptive NIP approxi-

575mator. For this, three adaptive FWNs were constructed

576to approximate uncertain functions h1ðz1Þ ¼ � _yd,

577h2ðz2Þ ¼ f2ðx2Þ � _v2f
� 	�

g2, and h3ðz3Þ ¼

578f3ðx3Þ � _v3f
� 	�

g3 where z1 ¼ _yd, z2 ¼ x1 x2 _v2f½ �T ,

579and z3 ¼ x2 x3 _v3f½ �
T
for controller design. In the

580following, z1, z2 and z3 denote the inputs and ĥ1ðz1Þ,

581ĥ2ðz2Þ, and ĥ3ðz3Þ denote the output of the FWNs.

582No prior knowledge about the unknown dynamics of

583the network and no off-line learning are required.

584Furthermore, the network initialization is done arbi-

585trarily and then, all parameters of the network are

586adjusted by the adaptive laws (20), (29) and (38). Then,

587the dead-zone operator-based model is used to describe

588the saturation nonlinearity. The virtual and actual

589control inputs are applied as

v2 ¼� k1e1 � ĥ1 z1ð Þ

v3 ¼� k2e2 � ĥ2ðz2Þ

v ¼� k3e3 � ĥ3ðz3Þ þ

Z

50

0

q̂kðr; tÞdzrðvÞdr

ð43Þ

591591
592where

R 50

0
q̂kðr; tÞdzrðvÞdr is approximated by

Z

50

0

q̂kðr; tÞdzrðvÞdr ffi
X

500

i¼1

q̂kðiDr; tÞDr ð44Þ

594594
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595 and Dr ¼ 0:1. Other design parameters are set to

596 k1 ¼ 5:5, k2 ¼ 5, k3 ¼ 4:5, s ¼ 0:01, c1 ¼ 5,

597 c2 ¼ c3 ¼ 3, cp ¼ 0:1. Also, the initial conditions are

598 set to zero.

599 • The conventional controller

600 The conventional controller indicates the FWN-based

601 DSC controller which is designed for uncertain non-

602 linear system (1) without considering input saturation.

603 In this controller, the constructed adaptive FWN is

604 invoked to represent the model of the unknown

605 functions and then the DSC controller is designed

606 using the proposed FWN model. The virtual and actual

607 control inputs by the conventional controller are

608 proposed as

v2 ¼� k1e1 � ĥ1 z1ð Þ

v3 ¼� k2e2 � ĥ2ðz2Þ

v ¼� k3e3 � ĥ3ðz3Þ

ð45Þ

610610

611The design parameters k1, k2, k3, s, the learning rates

612c1; c2; c3, and the FWN models were chosen as the

613same as the proposed controller in this work.

614• NN-Based DSC Controller [37]

615The proposed NN-based DSC controller in [37] is

616applied for uncertain nonlinear system (42) in the

617presence of input saturation. It uses radial-basis-func-

618tion neural network to approximate the unknown

619functions and then it designs DSC scheme. It uses

620linear-in-parameter approximator, and it only adjusts

621the weights of the network. Furthermore, the saturation

622nonlinearity is approximated by the tanh function that

623requires the bound of the input saturation. The

624controller design parameters were chosen according to

625[37].

626In the following, the simulations are presented for two

627cases.

628Case 1 Tracking response for sinusoidal desired

629trajectory

Table 1 Comparison results

between the NIP and LIP

approximators

Approximator Criteria h1ðz1Þ h2ðz2Þ h3ðz3Þ

NIP approximator RMSE 0.2970 3.7612 5.0804

Number of nodes 2 3 3

Number of adjustable parameters 6 21 21

LIP approximator RMSE 0.8674 5.0233 6.0412

Number of nodes 20 150 150

Number of adjustable parameters 20 150 150

Fig. 5 a Output response, b tracking error (Case 1) Fig. 6 Control input (Case 1) a the proposed scheme and conven-

tional controller, b NN-based DSC scheme [37]
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630 To illustrate the effectiveness of the proposed controller,

631 the time-varying desired trajectory is taken as

632 yd ¼ sin t þ cosð0:5tÞ.

633 In order to show that the proposed NIP approximator

634 solves the ‘‘cure of dimensionality’’ problem, radial-basis-

635 function neural network as a LIP approximator was

636 invoked to approximate uncertain functions h1ðz1Þ, h2ðz2Þ

637 and h3ðz3Þ. The results are shown in Fig. 4. Also, com-

638 parison results between the NIP and LIP approximators are

639 shown in Table 1. Table 1 reports the root mean square

640error (RMSE), number of nodes and number of

641adjustable parameters for both of NIP and LIP approxi-

642mators. As it is seen from the reported results, the NIP

643approximator achieves less RMSE than the LIP one by

644using less number of nodes and adjustable parameters. In

645comparison with the LIP approximator, the NIP approxi-

646mators achieve better approximation accuracy by using less

647number of adjustable parameters. So, it can avoid the

648‘‘curse of dimensionality’’ problem.

649Output response and tracking error of the proposed

650controller and other methods are shown in Fig. 5.

651From Fig. 5a, the output of the system is able to track

652the desired position trajectory in the presence of the

653uncertain dynamics and unknown saturation nonlinearity;

654also, it has better steady-state behaviour than the other

655methods. The tracking error for each scheme is shown in

656Fig. 5b. It is seen that the tracking error tends to suffi-

657ciently small neighbourhood of the origin and remains

658there while the control signal is not large and the

Table 2 Computation time for different values of Dr for one typical

sampling time

Dr cases Dr ¼ 0:1 Dr ¼ 0:01 Dr ¼ 0:001

Case 1 0.005698 S 0.036116 S 0.197894 S

Case 2 0.005821 S 0.044435 S 0.202674 S

Fig. 7 Norm of the FWN parameters (Case 1)
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659singularity problem has been eliminated. The tacking per-

660formance obtained in Fig. 5 shows that the proposed

661scheme has compensated the effect of the unknown satu-

662ration nonlinearity and has been able to model the

663unknown dynamics of the system without any prior

664knowledge or off-line computation.

665The control effort for each scheme is shown in Fig. 6. It

666is seen from the simulation results in Fig. 6 that the pro-

667posed scheme has less amplitude than the conventional

668one. Further, it has better behaviour and less fluctuation

669than the proposed scheme in [37]. As it is seen from

670Fig. 6b, the control effort of the proposed scheme in [37]

671has many fluctuations that make its implementation hard.

672Also, integral term
R 50

0
q̂kðr; tÞdzrðvÞdr in the control

673input (43) is approximated by summation term

674
PM

i¼1 q̂kðiDr; tÞDr; small values of Dr result in better

675estimation of integral term. However, it requires more
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Fig. 8 a Output response. b Tracking error (Case 2)

Fig. 9 Control input (Case 2)
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676computation. Computation time for different values of Dr

677for the two cases considered in this work (Case 1 and Case

6782) was reported in Table 2. It should be noted that the

679reported results in Table 2 approximate the integral term

680

R 50

0
q̂kðr; tÞdzrðvÞdr by

PM
i¼1 q̂kðiDr; tÞDr just for one typ-

681ical sampling time. One sampling time has been selected

682for simplicity, and it does not affect the generality of the

683discussion. As it is obvious from Table 2, smaller values of

684Dr require larger computation time.

685Also, Fig. 7 shows the norm of the FWN parameters

686such as dilation and translation of the wavelet functions

687and the weights of the network. Reported results show that

688the norm of the adjustable parameters is bounded.

689Case 2 Tracking constant desired trajectory

690To illustrate the effectiveness of the proposed scheme,

691the desired position trajectory is assumed to be constant

692and it is chosen as yd ¼ 3. The simulation results are shown

693in Figs. 8, 9 and 10. Figure 8a shows the angular position

694of the link (y) and the desired position (yd). The position

695tracking error is depicted in Fig. 8b. From Fig. 8, good
Fig. 10 Norm of the FWN parameters (Case 2)

Fig. 11 Output response of the proposed scheme in the presence of disturbance: a Case 1, b Case 2
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696 tracking performance is inferred for uncertain system (1) in

697 the presence of uncertain dynamics and input saturation.

698 Furthermore, the proposed scheme improves the charac-

699 teristics of the transient response, significantly. It elimi-

700 nates the undesirable overshoot and reduces the settling

701 time. From Fig. 8, the output response and the tracking

702 error of the proposed scheme match to the output response

703 and the tracking error of the conventional controller. This

704 verifies the ability of the proposed scheme to compensate

705 the effect of the saturation nonlinearity.

706 The control input is shown in Fig. 9. It is inferred from

707 Fig. 9 that the control input is limited to the saturation

708 bound. The reported results demonstrate that the control

709 energy of the proposed scheme is smaller than that of the

710 other methods. Finally, the norm of the adjustable param-

711 eters of the FWN is shown in Fig. 10. The boundedness of

712 the norm of the FWN parameters including the translation

713 and dilation parameters of wavelets and weights of the

714 network are inferred from the reported results in Fig. 10.

715 Finally, the robustness of the proposed scheme is

716 checked by adding external disturbances dðtÞ ¼ 0:4 cosð2tÞ

717 to the input of the control system. The results for Cases 1

718 and 2 are presented in Fig. 11. Figure 11a, b shows the

719 results for tracking of sinusoidal desired trajectory and

720 constant desired trajectory, respectively. The results verify

721 that the proposed scheme can achieve tracking and regu-

722 lation performance in the presence of external disturbance.

723 So, the obtained results demonstrate the robustness of the

724 proposed scheme against external disturbance.

725 6 Conclusion

726 A dead-zone operator-based dynamic surface control

727 scheme was developed for uncertain strict-feedback non-

728 linear systems in the presence of the input saturation.

729 Adaptive fuzzy wavelet network as a nonlinear-in-param-

730 eter approximator is used to model the unknown dynamics

731 of the system without any prior knowledge or off-line

732 learning. Saturation constraint is modelled using the dead-

733 zone operator-based model that does not require the bound

734 of saturation being known. Using the adaptive fuzzy

735 wavelet network approximator and the dead-zone operator-

736 based saturation model, an adaptive dynamic surface con-

737 trol is developed. Stability analysis guarantees that all

738 signals of the closed-loop system are uniformly ultimately

739 bounded and the tracking error can be arbitrarily made

740small by proper selection of design parameters. The pro-

741posed scheme avoids the ‘‘explosion of complexity’’ and

742‘‘curse of dimensionality’’ problems. Furthermore, it avoids

743the singularity problem that is conventional problem in the

744nonlinear systems with uncertain control gains. Simulation

745results demonstrate the effectiveness of the proposed

746scheme. Implementation of the proposed scheme for the

747real-world applications can be considered as a future work.

748Also, two other issues are suggested for future works: (1)

749extending the proposed control approach to the uncertain

750nonlinear systems with time delay and input saturation and

751(2) designing an adaptive fuzzy wavelet network-based

752output feedback control for the considered system.

753Acknowledgements This research is carried out under the Grant
754Number 141/632 of the Shahrekord University.

755Appendix A: Proof of Theorem 1

756In this section, proof of Theorem 1 is presented. To anal-

757ysis the stability, the following Lyapunov function candi-

758date is considered:

V ¼
X

n�1

i¼1

1

2gi
e2i þ

1

2
g2iþ1

� 

þ
X

n

i¼1

1

2c1

~h
T

i
~hi þ

1

2c2
~cTi ~ci þ

1

2c3
~xT
i ~xi

� 

þ
1

2b
e2n

þ
1

2cq

Z

R

0

~q2kðr; tÞdr

ðA1Þ

760760where ~qkðr; tÞ ¼ qkðrÞ � q̂kðr; tÞ,
~hi ¼ h	i � ĥi, ~ci ¼ c	i � ĉi

761and ~xi ¼ x	
i � x̂i. Differentiating (A1) with respect to

762time results in:

_V ¼
X

n�1

i¼1

1

gi
ei _ei �

_gie
2
i

2g2i
þ giþ1 _giþ1

� 

þ
1

b
en _en

�
X

n

i¼1

1

c1

~h
T

i

_̂
hi þ

1

c2
~c
T
i
_̂ci þ

1

c3
~xT
i
_̂xi

� 

�
_b

2b2
e2n

�
1

cq

Z

R

0

~qkðr; tÞ
o

ot
q̂kðr; tÞdr (A2)

764764Substituting (22), (31) and (39) into (A2) results in:
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_V ¼
X

n�1

i¼1

eiðeiþ1 þ giþ1 � kiei þ ~hiÞ �
_gie

2
i

2g2i
þ giþ1 _giþ1

� 

þ en � knen þ

Z

R

0

q̂kðr; tÞ � qkðrÞð ÞdzrðvÞdr þ ~hn

0

@

1

A

�
X

n

i¼1

1

c1

~h
T

i

_̂
hi þ

1

c2
~c
T
i
_̂ci þ

1

c3
~xT
i
_̂xi

� 

�
_b

2b2
e2n

�
1

cq

Z

R

0

~qkðr; tÞ
o

ot
q̂kðr; tÞdr

ðA3Þ

766766 Let us define ~wi ¼ w	
i � ŵi. Now,

~hi can be written as [50]

~hi ¼ ~h
T

i ŵi þ ĥ
T

i
~wi þ

~h
T

i
~wi þ d	i ðA4Þ

768768 where i ¼ 1; . . .; n. Adaptive FWN is used as a NIP

769 approximator, so the basis function wi has nonlinear

770 dependencies to the adjustable parameters of the network.

771 Therefore, to develop the adaptive learning laws for tuning

772 the network parameters, the Taylor expansion linearization

773 technique is employed to transform the nonlinear function

774 into a partially linear form [48, 50]. The result is obtained

775 as

~wi ¼ AT
i ~xi þ BT

i
~ci þ oi ðA5Þ

777777
where i ¼ 1; . . .; n, Ai ¼

owi

oxi

� ��

�

�

xi¼x̂i

, Bi ¼
owi

oci

� ��

�

�

ci¼ĉi

and

778 oi is the high-order terms of expansion. Substituting (A5)

779 into (A4) gives:

~hi ¼ ~h
T

i ŵi þ ĥ
T

i AT
i ~xi þ BT

i
~ci

� 	

þ ~h
T

i
~wi þ ĥ

T

i oi þ d	i ðA6Þ

781781 Also, substituting (23), (32) and (A6) into (A3) results in:

_V ¼ �
X

n�1

i¼1

ki þ
_gi

2g2i

� 

e2i � kn þ
_b

2b2

 !

e2n

þ
X

n�1

i¼1

ei eiþ1 þ giþ1

� 	

þ
X

n

i¼1

ei ~hTi AT
i ~xi þ BT

i ~ci þ oi
� 	

� �

þ
X

n

i¼1

ei ~h
T

i ŵi þ ĥ
T

i AT
i ~xi þ BT

i ~ci

� 	

þ ĥ
T

i oi þ d	i

� �

þ
X

n�1

i¼1

�
g2iþ1

siþ1

þ giþ1Miþ1

� 

�
X

n

i¼1

1

c1

~h
T

i

_̂
hi þ

1

c2
~c
T
i
_̂ci þ

1

c3
~xT
i
_̂xi

� 

þ en

Z

R

0

q̂kðr; tÞ � qkðrÞð ÞdzrðvÞdr

0

@

1

A

�
1

cq

Z

R

0

~qkðr; tÞ
o

ot
q̂kðr; tÞdr

ðA7Þ

783783 Since ĥ
T

i A
T
i ~xi ¼ ~xT

i Aiĥi and ĥ
T

i B
T
i
~ci ¼ ~cTi Biĥi, (A7) is

784 rewritten as:

_V ¼ �
X

n�1

i¼1

ki þ
_gi

2g2i

� 

e2i � kn þ
_b

2b2

 !

e2n

þ
X

n�1

i¼1

ei eiþ1 þ giþ1

� 	

þ
X

n�1

i¼1

�
g2iþ1

siþ1

þ giþ1Miþ1

� 

þ
X

n

i¼1

~h
T

i ŵi � AT
i x̂i � BT

i ĉi

� �

ei �
1

c1
_hi

� 

þ
X

n

i¼1

~xT
i Aiĥiei �

1

c3
_xi

� 

þ
X

n

i¼1

~cTi Biĥiei �
1

c2
ĉi

� 

þ
X

n

i¼1

ei ~h
T

i AT
i x

	
i þ BT

i c
	
i

� 	

þ h	Ti oi þ d	i

� �

�
1

cq

Z

R

0

~qkðr; tÞ
o

ot
q̂kðr; tÞ þ cqendzrðvÞ

� 

dr

ðA8Þ

786786Let us define Di ¼ ~h
T

i AT
i x

	
i þ BT

i c
	
i

� 	

þ h	Ti oi þ d	i for

787i ¼ 1; . . .; n. Substituting adaptive laws (20), (29) and (38)

788into (A8) results in:

_V ¼ �
X

n�1

i¼1

ki þ
_gi

2g2i

� 

e2i � kn þ
_b

2b2

 !

e2n

þ
X

n�1

i¼1

ei eiþ1 þ giþ1

� 	

þ
X

n�1

i¼1

�
g2iþ1

siþ1

þ giþ1Miþ1

� 

þ
X

n

i¼1

r~h
T

i ĥi þ
X

n

i¼1

r ~xT
i x̂i þ

X

n

i¼1

r~cTi ĉi þ
X

n

i¼1

eiDi

þ rq

Z

R

0

q̂kðt; rÞ~qkðr; tÞdr

ðA9Þ

790790Considering the following facts

eieiþ1 � 0:5 e2i þ e2iþ1

� 	

; i ¼ 1; 2; . . .; n

eigiþ1 � 0:5 e2i þ g2iþ1

� 	

; i ¼ 1; 2; . . .; n� 1

giþ1Miþ1

�

�

�

�� 0:5eg2iþ1 þ 0:5e�1 �M2
iþ1; i ¼ 1; 2; . . .; n� 1

eiDi � 0:5 e2i þ
�D
2
i

� 	

; i ¼ 1; 2; . . .n

~qkðr; tÞp� 0:5~q2kðr; tÞ þ 0:5p2kmax

ðA10Þ

792792where qkðrÞ� qkmax, and e is a positive constant. Also,

793considering the following inequalities

~xT
i x̂i � 0:5 x	T

i x	
i � ~xT

i ~xi

� 	

; i ¼ 1; 2; . . .; n

~cTi ĉi � 0:5 c	Ti c	i � ~cTi ~ci
� 	

; i ¼ 1; 2; . . .; n

~h
T

i ĥi � 0:5 h	Ti h	i �
~h
T

i
~hi

� �

; i ¼ 1; 2; . . .; n

ðA11Þ

795795Now, using (A10) and (A11), (A9) is written as
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_V � � k1 �
gd1
2g2l1

� 1:5

� 

e21 �
X

n�1

i¼2

ki �
gdi
2g2li

� 2

� 

e2i

� kn �
bd

2b2l
� 1

 !

e2n �
X

n�1

i¼1

1

siþ1

� 0:5e� 0:5

� 

g2iþ1

þ 0:5r
X

n

i¼1

�h2i þ �c2i þ �x2
i

� 	

þ 0:5
X

n�1

i¼1

�D
2
i þ e�1 �M2

iþ1

� 	

�0:5r
X

n

i¼1

~h
T

i
~hi þ ~cTi ~ci þ ~xT

i ~xi

� �

rq

Z

R

0

0:5~q2kðr; tÞ � 0:5p2kmax

� �

dr

ðA12Þ

797797 Choose the deign parameters ki, siþ1, r and rq such that

798
k1 �

gd
1

2g2
l1

� 1:5[ 0, ki �
gd
i

2g2
li

� 2[ 0; i ¼ 2; . . .; n� 1,

799
kn �

bd

2b2l
� 1[ 0, 1

siþ1
� 0:5e� 0:5[ 0, r[ 0 and rq[ 0,

800 respectively.

801 Considering the design parameters ki, siþ1, r and rq,

802 comparing (A12) with (A1) reveals that (A12) satisfies the

803 following inequality

_V � � aV þ b ðA13Þ

805805 where a and b are as follows:

a� min

2gh1 k1 � 1:5�
gd1
2g2l1

� 

2ghi ki � 2�
gdi
2g2li

� 

2bh kn � 1�
bd

2b2l

 !

2

siþ1

� e� 1

rc1; rc2; rc2
rqcq

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

807807
b ¼ 0:5

X

n�1

i¼1

�D
2
i þ e�1 �M2

iþ1

� 	

þ 0:5r
X

n

i¼1

�h2i þ �c2i þ �x2
i

� 	

þ 0:5rqRp
2
kmax

809809 Solving inequality (A13) results in:

0�V �
b

a
þ Vð0Þ �

b

a

� 

e�at ðA14Þ

811811 From (A14), it is obtained that limt!1 V ¼ b
a
. So, V is

812 bounded by b
a
. Therefore, all signals of the closed-loop

813 system, i.e. ei; giþ1;
~hi; ~ci; ~xi and ~qk are uniformly ulti-

814 mately bounded. From the considered Lyapunov function

815 in (A1), it can be inferred that

1

2g1
e21 �V ðA15Þ

817817Considering Assumption 2, Eq. (A15) is written as

e21 � 2gh1V ðA16Þ

819819which results in the following bound

e1ðtÞj j �
ffiffiffiffiffiffiffiffiffiffiffiffi

2gh1V
p

ðA17Þ

821821Now, considering (A14), the following bound is obtained

822for the tracking error

e1j j �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2gh1 e�a tVð0Þ þ
b

a
ð1� e�atÞ

� 

s

ðA18Þ

824824It is seen form (A18) that the bound of the tracking error

825can be made arbitrarily small by proper selection of the

826design parameters.
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