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a b s t r a c t

Nowadays, the development of new computer-based technologies has led to rapid increase in the
volume of user-generated textual content on the website. Patient-written medical and health-care
reviews are among the most valuable and useful textual content on social media which have not
been studied extensively by researchers in the fields of natural language processing (NLP) and data
mining. These reviews offer insights into the interaction of patients with doctors, treatment, and their
satisfaction or frustration with the delivery of healthcare services. In this study, we propose two deep
fusion models based on three-way decision theory to analyze the drug reviews. The first fusion model,
3-way fusion of one deep model with a traditional learning algorithm (3W1DT) developed using a deep
learning method as a primary classifier and a traditional learning method as the secondary method
that is used when the confidence of the deep method during classification of test samples is low. In
the second proposed deep fusion model, 3-way fusion of three deep models with a traditional model
(3W3DT), three deep and one traditional models are trained on the entire training data and each
classifies the test sample individually. Then, the most confident classifier is selected to classify the
test drug review. Our results on the reviews based on Drugs.com dataset show that both proposed
3W1DT and 3W3DT methods outperformed the traditional and deep learning methods by 4% and the
3W3DT outperformed 3W1DT by 2% in terms of accuracy and F1-measure.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Advancement in technology has made sentiment analysis (SA)
an increasingly popular field of study in recent years focusing
on the treatment of subjectivity in textual content [1]. The rapid
growth of social media and advances in natural language process-
ing (NLP) methods have paved the way for SA techniques to mine
user-generated data in various fields such as tourism, marketing,
and politics [2]. Nevertheless, medical, and health-care domains
have been less investigated by researchers in the SA field.

With the emergence of web and rapid growth of social me-
dia, it is now a common practice for patients to share their
views on treatment and drugs on social media platforms. This
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produces significant amount of unstructured textual data which
may be utilized in important applications including finding ad-
verse drug reactions (ADRs), assisting in diagnosis and treatment
choices, recommending personalized therapy options, and find-
ing serendipitous drug usage [3]. These applications traditionally
utilize structured data which is difficult to generate and limited
in quantity. On the other hand, user-generated reviews do not
have such limitations making them a promising alternative for
structured data.

In this study, patient-written drug reviews are analyzed to
understand users’ view on various drugs whose safety tradi-
tionally depend on few clinical trials and specific test protocols
observed during the limited test duration [24]. Specifically, SA is
applied on the drug reviews to find whether a review is positive,
negative, or neutral. The SA of drug reviews is an important task
because after consuming drugs, users share their experiences and
preferences anonymously, providing a great deal of information
to be examined to make accurate decision about public health and
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Table 1
Comparison of recent studies conducted using sentiment analysis.
Study Type Description

Basiri and Kabiri [4]

Lexicon-based

Compared lexicon-based methods for SA in the Persian language
Duwairi et al. [5] Proposed lexicon-based method for Arabic SA
Zhang et al. [6] Proposed topic-specific Cinease lexicon for SA
Plaza-del-Arco et al. [7] Improved lexicon-based emotion recognition in Spanish
Asghar et al. [8] Improved lexicon-based SA using rule-based
Vashishtha and Susan [9] Improved lexicon-based SA using fuzzy rule-based
Basiri et al. [10] Improved lexicon-based SA using target detection
Basiri and Kabiri [11] Improved Persian lexicon-based SA using lexicon refining

Basiri and Kabiri [12] Hybrid Improved Persian lexicon-based SA using machine learning
Teng et al. [13] Combining deep learning with lexicon-based SA

Hew et al. [14]
ML-based

Used gradient boosting trees for SA
Rintyarna et al. [15] Improved SA using domain sensitive features
Wu et al. [16] Improving semi-supervised SA using with variational autoencoder

Han et al. [17]

Multi-modal

Improving SA using dynamic threshold and multi-classifiers
Poria et al. [18] Combined text, audio, and image for SA
Zhao et al. [19] Combined image and text for SA
Majumder et al. [20] Used hierarchical fusion with context modeling for SA
Nemati et al. [21] Combined audio, video, and text for emotion recognition

Table 2
Comparison of recent studies conducted using sentiment analysis on drug reviews.
Study Type Description

Ebrahimi et al. [22] Rule-based + ML Specified adverse drugs’ side effects.

Chew and Khoo [23] Analytical Compared drug-related information on social media and authoritative health web sites.

Asghar et al. [8] Lexico-based SA Proposed an enhanced lexicon-based method to find adverse drug reactions

Gräßer et al. [24] ML Addressed the problem of cross-data and cross-domain learning on drug reviews
Jiménez-Zafra et al. [25] Introduced two datasets of drugs- and doctors-related reviews from Spanish web sites

Ru et al. [3]

Deep

Identified serendipitous drug usage using a context-aware deep neural network
Liu et al. [26] Proposed a new position-aware word embedding and generate an enhanced medical lexicon
Zhang et al. [27] Proposed a weakly supervised neural model for drug review sentiment analysis.
Han et al. [28] Introduced a new aspect-level drug review dataset

Table 3
Comparison of recent studies in deep models for sentiment analysis.
Study Type Description

Do et al. [29] Aspect-level SA Reviewed the aspect-based sentiment analysis by researchers and various deep learning strategies
Young et al. [30] NLP Summarized and compared various models in SA
Zhang et al. [31] SA Surveyed various applications related to SA using deep learning
Liu et al. [32] Document-level SA Combined 2D CNN and attention-based bidirectional GRU for sentiment classification
Kumar et al. [33] Multimodal SA Utilized the real time multimodal data for fine-grained prediction of sentiments
Fa et al. [34] Document-level Presented an adverse drug event detection and extraction mechanism from the open data
Park et al. [35] Aspect-level Devised a deep learning strategy based on holistic recurrent attention on target-dependent memories
Minaee et al. [36] Document-level Devised a model for sentiment analysis based on ensemble of CNN and LSTM.
Ma et al. [37] Aspect-level Devised a hierarchical attention technique with LSTM comprising of sentence-level and target-level attention.

drug safety [38]. Sentiment analysis results are useful for patients,
drug manufacturers and clinicians to gain valuable insights about
the potential risks of adverse drug reactions.

The existing studies on drug review using SA can be catego-
rized into two main groups: traditional feature-based machine
learning techniques and deep learning methods [28]. In the first
category, the performance of the system relies heavily on man-
ually designed features extracted from the textual content of
reviews. Deep learning methods, on the other hand, apply dif-
ferent neural networks such as convolutional neural network
(CNN) or long short-term memory (LSTM) on the dense vec-
tor representations of textual content [35]. Although the deep
learning methods usually outperform the traditional methods,
their interpretability and time complexity are considered as their
drawbacks [34]. Another difference in the two methods is their
ability to classify different types of test samples [39]. This inspired
us to propose a fusion method which will benefit from both deep
and traditional learning methods for drug review classification.

In order to use the advantages of traditional and deep learning
methods effectively, this study used the theory of three-way deci-
sions that is a new interpretation of rules in rough set theory [40].

Table 4
Thresholds used to convert ratings to labels and distribution of three classes of
drug reviews.
Rating Label Class name Percentage

≤ 4 −1 Negative 25%
4 < r < 7 0 Neutral 9%
≥ 7 +1 Positive 66%

In this theory, the test sample space is divided into three regions:
accept, reject, and delay [41]. The first two regions correspond
to high-confidence classification results obtained for positive and
negative classes whereas the delay region corresponds to low-
confidence results. In the current study, following the approach
presented in [24], the problem is to classify test drug reviews into
positive, negative, and neutral categories. Therefore, we adopted
three regions in the original three-way decisions into four re-
gions, one corresponding to the low-confidence decisions and the
remaining high-confidence regions for three possible categories.

Different from previous studies, we propose two fusion mod-
els named 3-way fusion of one deep model with a traditional
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Fig. 1. Distribution of three classes of drug reviews based on the classifier confidence.

model (3W1DT) and 3-way fusion of three deep models with
a traditional model (3W3DT) to utilize both deep and tradi-
tional feature-based learning methods. To specify different re-
gions described in 3-way decisions based in the confidence level
of the classifier in classification of a test sample, we propose
a mechanism based on the values obtained at the output layer
of deep learning methods and classification results of traditional
feature-based learning methods.

In summary, the main three contributions of this study are as
follows:

• Proposed two fusion models for utilizing deep learning and
traditional feature-based machine learning methods for SA
of drug reviews.

• Exploited 3-way decisions theory to effectively find accurate
label of samples.

• Compared our proposed models with four traditional super-
vised machine learning and seven deep learning techniques
using Drugs.com dataset.

2. Related work

2.1. Sentiment classification

Sentiment classification has become a hot topic of research
in NLP community, and numerous classification methods have
been proposed in recent years [2]. In this section, we compared
few recent studies in sentiment analysis (SA). We categorized
these studies based on the core classification methods employed
and the data type applied to the method as shown in Table 1.
Comprehensive surveys on the challenges and applications of SA
are discussed in [42] and [43].

2.2. Drug review classification

Drug reviews are important due to several reasons; First, pa-
tients will know the results of using drugs by others like them
and such information is usually cannot be easily found from their
friends and family. Second, it has been shown that online com-
munity information and others’ experience have positive effect on
some kind of diseases [44]. Third, there exists several important
applications such as identification of adverse drug effects and

Fig. 2. Structure of 3W1DT framework obtained by the fusion of deep model
(LM1) and traditional model (LM2).

drug recommendation which may benefit from the results of
SA of drug reviews. Nevertheless, drug reviews have been less
analyzed using SA by researches as compared to other types of
reviews such as customer feedback, financial, or political reviews.
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Fig. 3. Structure of 3W3DT framework obtained by the fusion of three deep model (LM1, LM2, and LM3) and a traditional model (LM2).

In Table 2, a brief review of few recent related works on drug
reviews using sentiment classification is presented.

2.3. Deep learning for sentiment analysis

Deep learning is emerging as a vital tool in the ML area as it
does not require feature engineering. For sentiment analysis, deep
models have shown promising results. In Table 3, some of most
related studies are compared.

3. Methodology

In this study, two deep fusion models are proposed for the
classification of drug reviews based on the three-way decision
theory. In the original three-way decision theory, the results of
classification are divided into three regions: accept, reject and
abstain decisions [41]. This separation is suitable for binary de-
cisions where the output of the classifier is either positive or
negative (accept and reject decisions). In such cases the abstain
decision corresponds to those outputs for which the classifier
confidence is lower than a pre-defined threshold. In the current
study, there are three classes of drug reviews, namely, positive,
negative, and neutral. Therefore, the decision space is divided
into four regions in which three parts corresponds to the three
classifier decisions and the last part belongs to the boundary or
uncertain decisions. It is shown in Fig. 1.

As shown in Fig. 1, when the test sample is not in the low-
confidence section, the confidence level of classifier is high and
hence, we can rely on the decision made by the classifier. On
the other hand, when the test sample is in the boundary region,
the classifier’s decision is not reliable and hence, we need more
information to classify the sample correctly.

3.1. Proposed frameworks

To address the above-mentioned problem, two deep fusion
frameworks are proposed. In the first proposed framework, 3-way

Fig. 4. Deep models used in the 3W3DT framework: (a) GRU and (b) CNN model.

fusion of one deep model with a traditional model (3W1DT), a
deep learning model is used as the base classifier (BC) to classify
the test samples in the high-confidence region. A traditional
machine learning classifier such as multinomial Naïve Bayes or
decision tree is used as secondary classifier (SC) for the samples
in the boundary region. The overall view of the proposed 3W1DT
is shown in Fig. 2.

To decide whether to use the SC or rely on the BC decision,
we compared the outputs of the deep classifier (BC) with a
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Fig. 5. The details of (a) the GRU and (b) the CNN cells.

Fig. 6. The overall view of 3CRNN model used in the 3W3DT framework.

threshold t found empirically. The output layer of the deep clas-
sifier consists of three softmax neurons (see Section 3.1.3), each
corresponding to the classification confidence of one of possible
three classes [24] (i.e., positive, negative, and neutral classes).
The greater the distance between the results of the three output
neurons, the greater will be the certainty of the answer. In other
words, the confidence of the classifier may be calculated based
on the following value:

Cf (BC) = |o1 − o2 − o3| (1)

where, o1, o2, and o3 are the outputs of Softmax neurons in the
output layer of the deep model.

In the second proposed deep fusion model for drug review
classification, 3-way fusion of three deep models with a tradi-
tional model (3W3DT), three deep and one traditional models
are trained on the entire training data and each classifies the
test sample individually. The outputs of these models are in the
form of 3W1DT model (i.e., they are three probabilities each

corresponds to the confidence in one of three possible classes).
Therefore, for each model, the confidence value can be calculated
using a formula similar to Eq. (1). These confidence values are CF1,
CF2, CF3, and CF4 as shown in Fig. 3.

After calculating CF values for each test sample, the output of
the 3W3DT framework is given by:

SM = argmax
1≤i≤4

CF(LMi) (2)

where, LM i is the ith learning model, SM is the selected model for
generating the final output, and CF(LM) is calculated according to
Eq. (1) [41].

In the 3W3DT framework, three deep learning models namely,
gated recurrent unit (GRU), CNN, and three-way convolutional
recurrent neural network (3CRNN) are used. These models are
shown in Figs. 4 and 5.
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Fig. 7. Plot of number of sentences versus sentence length: (a) before (b) after removing outlier-length reviews.

Fig. 8. Plot of number of reviews versus length of reviews.

3.1.1. GRU model
In the GRU model, the first layer after the input layer is an

embedding layer. This layer is used to map the input feature
vector which is a sequence of word indexes to dense vectors of
fixed size. The next layer is a recurrent layer of type gated recur-
rent unit (GRU) (Fig. 5(a)). The GRU is a simpler variant of long
short-term memory (LSTM) which is a special type of recurrent
neural network (RNN) [32]. The GRU layer is usually used in text-
related problems where the sequence is more important than the
individual tokens which is the case in drug review classification.

Similar to LSTM cells, GRU is designed to handle the vanish-
ing/exploding problem of RNNs. This problem occurs when the
gradient becomes very small. In such cases, no real learning is
performed because the parameter update becomes meaningless.
A GRU cell has only two gates, an update gate r combining forget
and input gates that are also used in LSTMS, and a reset gate z.
The update and reset mechanisms are produced via the following

functions:

rt = δ(Wrht−1 + Urxt + br ) (3)

zt = δ(Wzht−1 + Uzxt + bz) (4)

where, δ is the logistic sigmoid function, U and W show the
weight matrices of gates or cell for input xt and hidden state ht ,
and b denotes the bias vector. The reset gate is used to decide
when the previous hidden state should be ignored. The update
gate is responsible for the amount of input information to the
current state [32]. The hidden state is computed via the following
functions:

ht = (1 − zt) ⊙ ht−1 + zt ⊙ h̃t (5)

h̃t = tanh(Wh̃t (ht−1 ⊙ rt) + Uh̃t xt ) (6)
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Table 5
Comparison of the results obtained using seven different algorithms for the first
experiment.
Method Classes Precision Recall F1-score

NB

Positive 0.7995 0.8584 0.8279
Natural 0.9590 0.3730 0.5371
Negative 0.8961 0.9455 0.9201
weighted avg 0.8775 0.8722 0.8626

DT

Positive 0.5106 0.2196 0.3071
Natural 0.0000 0.0000 0.0000
Negative 0.6926 0.9373 0.7966
weighted avg 0.5847 0.6729 0.6022

RF

Positive 0.0000 0.0000 0.0000
Natural 0.0000 0.0000 0.0000
Negative 0.6592 1.0000 0.7946
weighted avg 0.4345 0.6592 0.5237

KNN

Positive 0.4663 0.4082 0.4353
Natural 0.2679 0.0843 0.1282
Negative 0.7372 0.8410 0.7857
weighted avg 0.6270 0.6644 0.6387

GRU

Positive 0.6974 0.7208 0.7089
Natural 0.3279 0.0460 0.0806
Negative 0.8354 0.9226 0.8768
weighted avg 0.7552 0.7932 0.7631

CNN

Positive 0.8049 0.7932 0.7990
Natural 0.5896 0.4164 0.4881
Negative 0.8960 0.9368 0.9159
weighted avg 0.8456 0.8540 0.8481

3CRNN

Positive 0.8081 0.8039 0.8060
Natural 0.6001 0.4347 0.5041
Negative 0.9034 0.9391 0.9209
weighted avg 0.8522 0.8598 0.8546

The output of the GRU layer is sent to the output layer via a
dense layer. The output layer consists of three softmax cells, each
corresponding to one of three possible classes of drug reviews.

3.1.2. CNN model
Similar to the GRU model, the first layer on the top of the input

layer is an embedding layer. The next layer in this model is the
convolution layer which is used for local feature extraction [45].
The convolution operation is performed on the input features via
linear filters. To apply CNN to sentence S with s words, first, an
embedding vector of size e is created. Filter F of size e×h is then
repeatedly applied to the sub-matrices of the input matrix. This,
produces a feature map M = [m0,m1, . . . ,ms − h] as follows:

mi = F · Si:i+h−1 (7)

where, i = 0, 1, . . . , s − h and Si:j is a sub-matrix of S from row
i to j. It is a standard procedure to shrink the size of feature map
by feeding them to the pooling or sub-sample layer. In the CNN
model used in the current study, global max-pooling is used to
consolidate the output from the convolutional layer. Max-pooling
is a popular pooling technique which selects the most significant
feature b of the feature map as follows:

b = max
0≤i≤s−h

(
mj

)
(8)

The outputs of pooling layer are concatenated to form a pooled
feature vector which is then used as the input to fully connected
network (see Fig. 5(b)). Finally, the output layer in the CNN
models consists of three Softmax cells similar to GRU model
described earlier.

3.1.3. 3CRNN model
The first two layers of 3CRNN [45] model are similar to GRU

and CNN. On the top of these layers, 3CRNN model uses three
parallel convolution neural networks which apply different kernel

Table 6
Comparison of the results obtained using the first fusion model for the second
experiment.
Method Classes Precision Recall F1-score

GRU-NB

Positive 0.8285 0.7983 0.8131
Natural 0.9580 0.2454 0.3907
Negative 0.8652 0.9649 0.9124
weighted avg 0.8643 0.8585 0.8406

CNN-NB

Positive 0.8506 0.8216 0.8359
Natural 0.7785 0.4026 0.5307
Negative 0.8890 0.9591 0.9227
weighted avg 0.8694 0.8746 0.8657

3CRNN-NB

Positive 0.8549 0.8280 0.8412
Natural 0.7935 0.4090 0.5398
Negative 0.8925 0.9621 0.9260
weighted avg 0.8742 0.8788 0.8700

GRU-DT

Positive 0.7738 0.4132 0.5387
Natural 0.3462 0.0037 0.0074
Negative 0.7405 0.9717 0.8405
weighted avg 0.7134 0.7446 0.6899

CNN-DT

Positive 0.8551 0.6066 0.7097
Natural 0.6526 0.2116 0.3196
Negative 0.8050 0.9683 0.8792
weighted avg 0.8039 0.8095 0.7864

3CRNN-DT

Positive 0.8546 0.5643 0.6798
Natural 0.6568 0.1986 0.3050
Negative 0.7939 0.9721 0.8740
weighted avg 0.7968 0.8002 0.7741

GRU-RF

Positive 0.8910 0.3193 0.4702
Natural 0.3462 0.0037 0.0074
Negative 0.7186 0.9910 0.8331
weighted avg 0.7284 0.7337 0.6678

CNN-RF

Positive 0.9076 0.5554 0.6891
Natural 0.6526 0.2116 0.3196
Negative 0.7879 0.9769 0.8723
weighted avg 0.8058 0.8023 0.7767

3CRNN-RF

Positive 0.9221 0.5069 0.6542
Natural 0.6568 0.1986 0.3050
Negative 0.7751 0.9817 0.8663
weighted avg 0.8014 0.7922 0.7626

GRU-KNN

Positive 0.7269 0.5424 0.6212
Natural 0.3815 0.0590 0.1022
Negative 0.7825 0.9483 0.8575
weighted avg 0.7326 0.7665 0.7303

CNN-KNN

Positive 0.8179 0.6753 0.7398
Natural 0.6117 0.2528 0.3578
Negative 0.8356 0.9579 0.8926
weighted avg 0.8111 0.8236 0.8062

3CRNN-KNN

Positive 0.8155 0.6507 0.7239
Natural 0.6106 0.2458 0.3505
Negative 0.8298 0.9611 0.8906
weighted avg 0.8065 0.8190 0.8003

sizes at the output of embedding layer. This creates a multi-
channel CNN which reads text with different n-gram sizes (word
groups). A GRU layer is also applied on the embedding layer in
parallel with the multichannel CNN model. This layer is added to
equip the 3CRNN model with the advantages of the GRU model
in processing long dependencies in drug reviews. The output of
these four layers are concatenated and passed to the dense layer
as shown in Fig. 6.

3.2. Novelty of the proposed framework

As discussed in the earlier section, two methods are proposed
in this study to classify sentiment expressed in drugs reviews. The
main novelty of these methods is the combination of traditional
and deep models using 3-way decision theory. Consequently,
these methods take into account the uncertainty existed in the
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Fig. 9. Top 20 drug names in the dataset before normalization and preprocessing.

Fig. 10. Names of the top 20 drugs from the dataset after normalization and preprocessing.

classification models when try to classify hard samples in the
dataset.

4. Experiments and results

This section presents the conducted experiments using our
proposed fusion models applied to drug review data. This study
introduces two fusion models by combining deep learning (GRU,
CNN and 3CRNN) and traditional algorithms (NB, DT, RF and
KNN) called 3-way fusion of one deep model with a traditional
model (3W1DT) and 3-way fusion of three deep models with a
traditional model (3W3DT) models. The obtained results using
proposed fusion models and other applied methods are presented
in the following subsections.

4.1. Data

In this study, we used a drug review data introduced by
Gräßer et al. [24]. The dataset has 215063 instances in three main
categories: positive, negative and natural. Sentiment classification
(SA) has been widely investigated by using a variety of machine
learning and deep learning methods in the literature [46–48]. Due
to this importance, in this study, we attempted to show the power
and effectiveness of machine learning and deep learning methods
in SA of drug reviews.

Table 7
Comparison of the results obtained using the second fusion model for third
experiment.
Method Classes Precision Recall F1-score

3W3DT-NB

Positive 0.8380 0.8582 0.8480
Natural 0.9504 0.3808 0.5438
Negative 0.8968 0.9618 0.9281
weighted avg 0.8868 0.8836 0.8735

3W3DT-DT

Positive 0.8613 0.7108 0.7788
Natural 0.6752 0.2881 0.4038
Negative 0.8447 0.9670 0.9017
weighted avg 0.8337 0.8417 0.8261

3W3DT-RF

Positive 0.8629 0.7222 0.7863
Natural 0.6806 0.3009 0.4173
Negative 0.8491 0.9663 0.9039
weighted avg 0.8374 0.8453 0.8307

3W3DT-KNN

Positive 0.8635 0.6714 0.7554
Natural 0.5813 0.2116 0.3103
Negative 0.8244 0.9656 0.8894
weighted avg 0.8124 0.8241 0.8038

4.2. Pre-processing

We used thresholds as defined in Table 4 to extract three-level
polarity labels for the overall patient satisfaction ratings.
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Fig. 11. Confusion matrices obtained using seven algorithms for the first experiment.

To remove outlier-length sentences from the dataset, we plot-
ted the length of sentences against the number of sentences in
Fig. 7(a). The average sentence length is 85.72 and the maximum
is 1941. Moreover, the distribution of reviews by their length is
shown in Fig. 8.

According to Fig. 8, we removed reviews of lengths greater
than 180 words. The distribution of reviews based on their length
in terms of words is shown in Fig. 8. The average and maximum
sentence length are 85.25 and 180, respectively.

After performing the length normalization, we applied the
following steps on the reviews:

• Tokenizing sentences to a list of separate words.
• Creating a stop-words dictionary.
• Adding the custom stop-words to predefined list of English

stop-words.
• Creating a train–test split.

A large part of the corpus appeared to be drug names them-
selves at the preliminary examination. Instead of evaluating the
individual names of medications and using them to construct a
potentially biased weighting of names, we removed them by con-
structing a personalized product name corpus. Top 20 drug names
obtained in the original dataset are shown in Figs. 9 and 10. This
corpus is made by intersecting the Google 20k most common
English words and normalized drug names in the dataset.

4.3. Preliminary results

In the first round of the experiments, four well-known clas-
sical algorithms, Naïve Bayes (NB), Decision Tree (DT), Random
Forest (RF), and K-Nearest Neighbors (KNN), and three deep
learning-based methods (GRU, CNN, and 3CRNN) are applied on
the dataset. The confusion matrix of each method is shown in
Fig. 11.
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Fig. 12. Comparison of accuracies obtained using seven different algorithms for the first experiment.

Fig. 13. ROCs obtained using seven algorithms for the first experiment.
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Fig. 14. Confusion matrices of the results obtained using the first fusion model for the second experiment.
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Fig. 15. Comparison of accuracies obtained for the second experiment using the proposed 3W1DT model.

Table 8
Comparison of the results obtained using the state-of-the-art deep learning
methods.
Method Classes Precision Recall F1-score

AC-BiLSTM

Positive 0.7349 0.7685 0.7513
Natural 0.4077 0.1510 0.2203
Negative 0.8674 0.9267 0.8961
weighted avg 0.7928 0.8173 0.7990

IWV

Positive 0.6967 0.7911 0.7409
Natural 0.3808 0.1323 0.1964
Negative 0.8767 0.9094 0.8928
weighted avg 0.7870 0.8099 0.7921

CRNN

Positive 0.7514 0.8017 0.7758
Natural 0.4640 0.3841 0.4203
Negative 0.9057 0.9038 0.9047
weighted avg 0.8273 0.8315 0.8289

ARC

Positive 0.7275 0.7164 0.7219
Natural 0.3479 0.0839 0.1352
Negative 0.8395 0.9312 0.8830
weighted avg 0.7672 0.8012 0.7754

In Table 5, the algorithms are compared using four perfor-
mance measures: precision, recall, F1-score and weighted aver-
age [52–55].

Moreover, to compare the algorithms in more details, the ob-
tained accuracies and ROC measures [53] are presented in Figs. 12
and 13, respectively.

Table 1, Figs. 11 and 12 clearly illustrates that, NB performed
very well as compared to other algorithms followed by 3CRNN
and CNN. The achieved precision, recall, F1-score and accuracy
of NB in the first experiment are 0.8775, 0.8722, 0.8626 and
0.8722, respectively. Moreover, it can be seen from Fig. 13 that,
NB has yielded the best performance in terms of ROC metric as
compared to other methods. As we discussed earlier, this study
proposed two new fusion-based models by combining traditional

machine learning algorithms with deep learning methods. The re-
sults obtained for each fusion model is presented in the following
sub-sections.

4.4. Main results

In this section, the obtained results using two proposed fusion
models are discussed. In the first step, 3-way fusion of one deep
model with a traditional model (3W1DT) model is discussed
followed by the second fusion model named 3-way fusion of three
deep models with a traditional model (3W3DT).

4.4.1. 3-way fusion of one deep model with a traditional model
(3W1DT)

In this step, to improve the performance of our applied meth-
ods, the first fusion model is proposed by combining traditional
algorithms and deep learning methods. In the first fusion model
(3W1DT) each classical algorithm is combined with all deep
learning methods, separately. For example, NB is used with GRU,
CNN, and 3CRNN termed as CNN-NB, GRU-NB and 3CRNN-NB. The
obtained outcomes are presented in Fig. 14, Table 6, Figs. 15 and
16.

As mentioned earlier, the first proposed fusion model is used
to improve the performance of various deep learning methods
by using the classical algorithms. However, NB, DT, RF, and KNN
are tested on the samples that deep learning methods could not
classify them into one class with high confidence. According to
the obtained results (Table 2, Figs. 15, and 16), it can be seen that
the combination of NB with deep learning methods outperformed
the other three traditional algorithms. More specifically, among
applied deep learning methods, we found that combining 3CRNN
and NB could achieve significantly outstanding performance as
compared to the other methods. However, the improvements
are not very significant. In this study, we tried to reduce the
uncertainty in prediction level of deep learning and machine
learning methods. In other words, in addition to the improve-
ments, we had to deal with uncertainty issue using three-way

Table 9
Comparison of the performance of our best performing model (3W3DT-NB method) with other state-of-art techniques using the same database (drug review data).

Study Year Method Measures

Precision Recall F1-score Accuracy (%)

Gräßer et al. [24] 2018 logistic regression – – – 69.88
Colón–Ruizet al. [49] 2019 CNN (w2ventrenable) 0.6672 0.6672 0.6672 –
Jain et al. [50] 2019 Deep Neural Network(DNN) 0.8400 0.8300 – 83.80
Chen et al. [51] 2019 Fuzzy-rough featureSelection + bag ofwords (BoW) + Ripper – – – 65.06
This study 2020 3W3DT-NB 0.8868 0.8836 0.8735 88.36
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Fig. 16. ROCs obtained using seven algorithms for the second experiment with the proposed 3W1DT model.

approach. This means that, we identified the samples for which
models are unable to classify correctly and fed them to another
classifier. In other words, external classifier contributed to classify
correctly the misclassified samples. For further improvement of
drug review classification, we proposed the second fusion model
called 3-way fusion of three deep models with a traditional model
(3W3DT).

4.4.2. 3-way fusion of three deep models with a traditional model
(3W3DT),

In this section, the second fusion model, called 3-way fusion
of three deep models with a traditional model (3W3DT), is
employed to improve the performance of deep learning meth-
ods. In this model, three deep learning algorithms (GRU, CNN
and 3CRNN) together with traditional algorithms (NB, DT, RF
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Fig. 17. Confusion matrices of the results obtained using the second fusion model for third experiment employing (a) 3W3DT-NB, (b) 3W3DT-DT, (c) 3W3DT-RF and
(d) 3W3DT-KNN methods.

and KNN) are used one by one. The new hybrid methods called
3W3DT-NB, 3W3DT-DT, 3W3DT-RF and 3W3DT-KNN are em-
ployed. The obtained results using our second fusion model are
presented in Fig. 17, Table 7, Figs. 18, and 19.

It can be noted from Table 7, Figs. 18, and 19 that, 3W3DT
model significantly improved the results. In the previous steps,
the combination of NB and deep learning methods achieved bet-
ter outcomes as compared to the other used methods to SA in
drug reviews. Interestingly, we found that even though RF in the
second and third experiments did not yield good performances,
it obtained slightly better than DT. In contrast, KNN in the second
experiment (3W1DT) showed better performance as compared
to the first experiment. The performance improvement of KNN
with 3W1DT ranked the second best method while with 3W3DT
ranked the fourth best method. These outcomes demonstrate that
the combination of NB and deep learning performed well for SA
with drug data.

4.5. Comparison with state-of-the-art deep learning methods

In order to show the effectiveness of the proposed fusion mod-
els, we implemented four state-of-the-art deep learning methods.
We have used drug review data on AC-BiLSTM [56], Improved
Word Vectors (IWV) [57], CRNN [58], and attention neural net-
work (ARC) [59] models. The obtained results are presented in
Fig. 20, Table 8, Figs. 21, and 22.

It can be noted from the results that CRNN showed better
performance as compared to other three applied methods. CRNN
achieved the precision, recall, F1-score, and accuracy of 0.8273,
0.8315, 0.8289, and 0.8315, respectively. In contrast, ARC ob-
tained the weakest performance as compared to the other state-
of-the-art deep learning methods with precision, recall, F1-score,
and accuracy of 0.7672, 0.8012, 0.7754, and 0.8012, respectively.

We have also compared the performance of our second fusion
model with other studies which used the same dataset (see
Table 9).
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Fig. 18. Comparison of accuracies obtained with the third experiment using the proposed 3W3DT model.

Fig. 19. ROCs for seven algorithms employed for the third experiment using the proposed 3W3DT model.

It can be noted from Table 5 that, our second proposed fu-
sion model (3W3DT-NB) performed better than other existing
methods in the literature.

The main advantages of our fusion models are listed below.

1. Takes into consideration the misclassified samples.
2. Obtained outstanding performance.

3. Considered uncertainty quantification (UQ) in SA.

In the future, we plan to improve the performance of our
proposed fusion models using various feature selections meth-
ods [60] based on metaheuristic algorithms [61]. To do so, our
first plan is to apply recently introduced metaheuristic and
evolutionary-based algorithms [62–64]. Moreover, the strength
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Fig. 20. Confusion matrices of the results obtained using the applied state-of-the-art deep learning methods.

Fig. 21. Comparison of accuracies obtained in the third experiment using the state-of-the-art deep learning methods.

of Q-learning in ensemble learning is studied in [65]. Hence, we
intend to apply Q-learning algorithm (i.e., a Q-learning based dy-
namic model selection (QDMS) [66], Q-learning based on multi-
agent classifier system (QMACS) [65]). Moreover, we plan to
introduce weights to each model instead of using them with the
same weight. To do so, we aim to apply estimation algorithms
(EAs) to find the most appropriate weight in each method [53,67].
In addition, we aim to use other recent proposed deep learning
based methods and fusion techniques such as hierarchica deep
genetic networks [68], transfer learning-based deep models [69],
and other feature extraction methods using both textual and
image medical data [70–73].

5. Conclusion

In this study, we proposed two fusion sentiment classification
models called 3-way fusion of one deep model with a traditional
model (3W1DT) and 3-way fusion of three deep models with a
traditional model (3W3DT). In 3W1DT a deep learning method is
utilized as the base classifier (BC) which is applied to classify the
test samples in the high-confidence region. However, in 3W3DT
three deep and one traditional models are trained on the entire
training data and each classifies the test sample individually.
Moreover, we have compared our results with four state-of-the-
art deep learning methods: AC-BiLSTM, improved word vectors
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Fig. 22. ROCs obtained using seven algorithms for third experiment with state-of-the-art deep learning methods.

(IWV), CRNN, and attention neural network (ARC) by implement-
ing these models. The result of the second fusion model (3W3DT)
outperformed our first proposed fusion model (3W1DT) and all
four state-of-the-art deep learning methods (AC-BiLSTM, IWV,
CRNN and ARC). The proposed models may be applied to other
similar classification problems such as emotion recognition and
rating prediction in the domain of SA. However, in order to apply
the proposed method to such problems, the confidence calcu-
lation mechanism should be adopted for the specific problem.
Moreover, the boundaries in the sample space must be considered
carefully to divide the sample space into appropriate number of
classes. In future, we intend to use this proposed model for other
biomedical applications such as managing healthcare records,
detection of cardiac and neural diseases.
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