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γ	� Shear strain amplitude
e	� Void ratio
R2	� Coefficient of determination
MAE	� Mean absolute error
RMSE	� Root mean squared error
Min.	� Minimum
Max.	� Maximum
S.D.	� Standard deviation
N	� Number of data
Xm	� Measured value
Xp	� Predicted value

Introduction

Dynamic analysis to assess the reaction of the earth sys-
tems to stress applications, such as those created by wind 
loading, earthquakes or blasting are finding increased uti-
lizations in practical projects in geotechnical engineering. 
Various analytical models and idealized procedures may 
be employed to display seismic response of a soil deposit 
(Nimtaj and Javdanian 2014). Regardless of kind of tech-
niques, it is first essential to assess the precise dynamic 
properties of the soil deposits. Accurate evaluation of soil 
dynamic properties is partly a difficult issue in the solution 
of geotechnical earthquake problems.

One of the basic knowledge needed to evaluated the 
earthquake response and dynamic stability of ground is 
the dynamic properties of geomaterials. Several laboratory 
techniques are available to evaluate the dynamic soil prop-
erties at large strain and low strain amplitudes. To evalu-
ate shear stiffness, G, of cohesionless soils, much labora-
tory research have been carried out using apparatuses such 
as cyclic simple shear, cyclic triaxial, cyclic torsional shear 
and resonant column (e.g., Kokusho 1980; Saxena and 
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Reddy 1989; Yasuda and Matsumoto 1993; Hardin and 
Kalinski 2005; Xenaki and Athanasopoulos 2008; Aghaei 
Araei et al. 2010; Jafarian et al. 2015, 2016a, b; Dammala 
et al. 2017).

Numerous studies have been performed to characterize 
the influential factors on the shear stiffness ratio of soils 
(e.g., Hardin and Drnevich 1972; Ishibashi and Zhang 
1993; Stokoe et  al. 1994; Darendeli 2001; Roblee and 
Chiou 2004). On the basis of these studies, the most signifi-
cant parameters that affect G/Gmax include effective confin-
ing pressure and shear strain amplitude.

Iwasaki and Tatsuoka (1977) and Tatsuoka et al. (1978) 
in their series of investigations relating to shear stiffness for 
different soils found that the grain size distribution affect 
the dynamic characteristics of sandy soils. Void ratio (e) 
or relative density (Dr) are as the parameters that control 
nonlinear soil behavior. These parameters can affect shear 
stiffness ratio of cohesive and cohesionless soils (Darendeli 
2001).

The progress of computational methods for dynamic 
analysis has necessitated the precise specification and esti-
mation of dynamic soil properties. In the past years, novel 
aspects of problem solving, modeling, and optimization 
have been evolved with respect to the universal develop-
ment in computational software (Dehghani et  al. 2017; 
Wagh et  al. 2017). These aspects are referred to artificial 
intelligence such as artificial neural networks (ANNs). For 
intricate problems, experimentalists prefer these approaches 
in comparison to numerical and analytical methods. Many 
researchers utilized artificial intelligence approaches in dif-
ferent projects of geotechnical engineering such as behav-
ior of shallow footings (Javdanian et al. 2012; Shahin et al. 
2002), stress–strain modeling of soil (Ellis et al. 1995), soil 
slope stability (McCombie and Wilkinson 2002), soil liq-
uefaction potential (Baziar and Jafarian 2007; Javdanian 
et al. 2017), dynamic properties of cohesive soils (Jafarian 
et  al. 2014; Javdanian et  al. 2015a, b), soil water content 
(Fashi 2016), ground lateral spreading (Javadi et al. 2006; 
Javdanian and Seidali 2016), strong ground motions (Jafar-
ian et al. 2010), and deformation of rock masses (Gholami 
and Bodaghi 2017).

Numerous experimental data were recorded within the 
previous laboratory studies. These valuable data provide 
feasibility to develop a predictive model for the shear stiff-
ness ratio (G/Gmax) of soils. In spite of extensive practi-
cal applications of G/Gmax, review of the available studies 
reveals lack of a precise model for this significant param-
eter. The current research aims to develop an ANN-based 
model for predicting the G/Gmax of cohesionless soils in 
terms of confining pressure, σ′0 (kPa), shear strain ampli-
tude, γ (%), relative density, Dr (%), and mean grain size, 
D50 (mm) based on a comprehensive database of cyclic 
laboratory tests performed during the previous studies. It is 

clear that an accurate model is easier to be utilized in the 
usual geotechnical projects compared with the field-based 
assessment or laboratory techniques.

Description of ANN

During the past years, artificial neural network (ANN) 
based models have been utilized for estimation purposes 
in earth sciences extensively. Artificial neural networks 
(ANNs) are receiving increased consideration as a flexible, 
powerful, statistical modeling method for discovering pat-
terns in various data (Javan et al. 2015; Parsaie et al. 2016; 
Keshavarzi et al. 2016).

Artificial Neural network is a mathematical form of 
the combinations of biological neural of the central nerv-
ous system (Wasserman 1989; Alexhander and Morton 
1993; Arbib 1995; Anderson 1995). It can represent a sig-
nificant number of characteristics of human brain e.g. learn 
from previous examples and experience to new problems. 
There are a lot of connections between inputs and outputs 
in ANNs. Using these connections between neurons receive 
a transmission value which is called as weight. For every 
new data the weights could be renewed. The ANNs are sys-
tems combined of many simple processing elements whose 
functions are specified on the basis of connection pattern 
primarily. These systems are capable of complex operations 
such as learning or adaptation, and simple operations such 
as pre-processing of data for various types of inputs. The 
main elements of process in the ANNs are neurons. A neu-
ron includes three main parts namely activation function, 
bias and weights. The number of neurons in each layer of 
network may change in related to the problem. Details of 
the structure and operation of ANNs can be found in many 
publications (Smith 1993; Fausett 1994; Galushkin 2007).

Experimental database

A large experimental database was compiled from avail-
able published laboratory tests. The database consists 
resonant column (Iwasaki et  al. 1978; Ribay et  al. 2004; 
Senetakis et  al. 2011, 2012), cyclic torsional shear (Iwa-
saki et al. 1978) and cyclic triaxial tests (Goto et al. 1992; 
Rollins et al. 1998) and. These studies conducted on sandy 
(e.g., Fontainebleau sand and Toyoura sand) and gravelly 
soils (e.g., riverbed of Tone river, north of Kumagaya-City, 
Saitama Prefecture) to determine the dynamic properties of 
cohesionless soils at large strain and low strain amplitudes. 
The G/Gmax versus γ data gathered for cohesionless soils in 
this research shown in Fig. 1. Inputs and output variables 
employed in the development of ANN model introduced in 
Table 1.
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The experimental database was separated into two 
groups denoted as training set and testing set including 
80 and 20% of data, respectively. The testing data set was 
used to characterize when training stage must be stopped 
to avoid overfitting. The process of data division was 
conducted so that the main statistical index of the train-
ing data and testing data sets (i.e., minimum, maximum, 
standard deviation, and mean) become close to each 
other. Therefore, a trial selection method was performed 
and the most possible consistent division was specified 

(Masters 1993). Descriptive statistics of these two groups 
variables illustrated in Table 2.

In addition to the training and testing subsets, the 
results of centrifuge modeling of Brennan et  al. (2005) 
were also utilized as validation set for further generali-
zation an examination of performance of the developed 
model. The number of data considered for training set, 
testing set and validation set illustrated in Table 3.

Another collection of experimental data employed to 
examine the generality of the developed ANN models for 
future predictions. In this research, 65 tests result of cen-
trifuge physical modeling (Brennan et al. 2005) were uti-
lized as validation set (Table 3).

Model development

Clearly, the importance of current subject is shown in 
extensive previous experimental studies and proposed. 
Hence, a powerful tool is needed to assess the shear stiff-
ness ratio of cohesionless soils. A feed-forward with 
backpropagation algorithm was employed to develop the 
favorable ANN-based model. A network training rule that 
updates bias and weight values based on Levenberg–Mar-
quardt algorithm (Levenberg 1944; Marquardt 1963) was 
utilized. This algorithm appears to be the fastest proce-
dure for training process of moderate-sized feed-forward 
artificial neural networks. Also, this algorithm gives more 
accurate results in terms of convergence speed than vari-
ous training algorithm (Zayani et al. 2008). Input param-
eters include: shear strain, confining pressure, mean grain 
size, and relative density of soil and output parameter is 
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Fig. 1   Gathered experimental database for cohesionless soils based 
on laboratory cyclic tests

Table 1   Inputs and output variables

Parameter

Inputs
 Effective confining pressure σ′0 (kPa)
 Shear strain amplitude γ(%)
 Mean grain size D50 (mm)
 Relative density Dr (%)

Output
 Shear stiffness ratio G/Gmax

Table 2   Descriptive statistics 
of the variables used in the 
model development

Parameters Training set Testing set

Min Max S.D. Mean Min Max S.D. Mean

D50 (mm) 0.162 10 3.09 2.51 0.162 10 3.04 2.56
Dr (%) 27 100 20.57 71.13 27 100 20.11 70.82
σ′0 (kPa) 25 300 56.31 110.60 25 300 58.01 110.79
γ(%) 0.0001 1.267 0.1678 0.0521 0.0001 1.492 0.1994 0.0631
G/Gmax 0.015 1.008 0.27 0.77 0.012 1.006 0.28 0.76

Table 3   Number of data considered for various stages

Group No.

All element tests data 635
Training set (80% of all element tests) 508
Testing set (20% of all element tests) 127
Validation set (Centrifuge data) 65
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shear stiffness ratio. The correlation between the inputs 
(x1, …, xp) and the output (yt) has the computational form 
as Eq. (1):

where, P is the number of input nodes; Q is the number 
of hidden nodes; wi,j and wj are connection weights; et is 
the residual at time t; and g is the transfer function such as 
tan-sigmoid and log-sigmoid. Therefore, the feed-forward 
neural network model of Eq. (1) performs a nonlinear oper-
ational mapping from the past records to the future amount 
(yt), as Eq. (2).

where f is a function defined by the structure of network 
and weights, and W is a vector of all parameters. Hence, 
above mentioned feed-forward based neural network is 
equivalent to a autoregressive nonlinear model.

The model architecture was constructed by one hidden 
layer. The input vector is fully connected to the hidden neu-
rons with a transfer function of tan-sigmoid. Also, the neu-
rons of hidden layer are fully connected to the output layer 
by a linear function. Statistical studies were begun with two 
hidden neurons to attain the desired number of hidden neu-
rons and favorable precision (Haykin 1994).

In order to check the accuracy of the proposed models, 
the coefficient of determination (R2), root mean squared 
error (RMSE), and mean absolute error (MAE) between 
the predicted and measured G/Gmax ratios were calculated 
according to Eqs. (3–5):

where Xm is measured values, Xp is predicted values, and 
N is the number of data.

In real, several ANN-based models with tests data 
were developed. Then, the more accurate model (i.e., 
higher coefficient of determination and smaller MAE 
and RMSE) for validation stage was chosen. In the other 
words, the ANN-based models were developed with the 
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best performance for training, testing and validation 
stages concurrently.

The models are generated using the element tests data 
and then validated by the centrifuge tests results. There-
fore, it is reasonable to expect that these models have 
enough generality for precise evaluation of shear stiff-
ness ratio of cohesionless soils. Consequently, a model is 
proposed to be the best ANN-based model. The desired 
model has five hidden neurons and the number of epochs 
in which all stages (i.e., the training, testing and valida-
tion data sets) simultaneously result to best outputs is 
found to be 300.

Results and discussions

Numerous runs were conducted with different initial 
settings and the performance of developed ANN-based 
model was analyzed for each run. Thereupon, the best 
model was chosen on the basis of statistical criteria of 
R2, MAE and RMSE. Moreover, a comprehensive sensi-
tivity analysis was carried out to check the behavior of 
each ANN model against changes of input variables. The 
developed model that chosen as most suitable model was 
constituted by four input parameters (i.e., γ, σ′0, D50 and 
Dr) and one output (i.e., G/Gmax).

Accuracy of the developed model is examined by 
plotting the predicted versus measured values of the 
G/Gmax for training set, testing set, and all element tests 
data as shown in Figs. 2, 3 and 4, respectively. The val-
ues of R2, MAE, and RMSE are equal to 0.984, 0.026, 
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and 0.034, respectively, for training data set (Fig. 2) and 
0.980, 0.028, and 0.039, respectively, for testing data set 
(Fig. 3). Also, for all element data sets, the values of R2, 
MAE, and RMSE are equal to 0.983, 0.026 and 0.036 
respectively (Fig. 4).

To confirm the enough generality for field predictions, 
centrifuge validation result of Brennan et  al. (2005) was 
employed as another testing set. They conducted these tests 
on dry and saturated sand. In their research, all physical 
modeling have been performed at 50 g on the 10 m diam-
eter beam Cambridge centrifuge and earthquake lading 

is applied using the mechanical actuator. Figure  5 shows 
predicted versus measured G/Gmax for the validation tests 
data. The values of R2, MAE, and RMSE for this experi-
mental data set were obtained equal to 0.941, 0.040, and 
0.054, respectively. In fact, the evolved ANN-based model 
has obtained high precision for both testing and validation 
data sets.

Table 4 presents the amounts of R2, MAE, and RMSE of 
the proposed ANN-based model for all test data and train-
ing stage, testing stage and also validation stage. From the 
plots presented in Figs. 2, 3, 4 and 5, it is concluded that 
the proposed model can predict the G/Gmax of cohesionless 
soils with appropriate accuracy.

Sensitivity analysis and model accuracy

Further examination on the model performance under 
various conditions was carried out through a sensitivity 
analysis. This part of the research was conducted to eval-
uate whether the ANN model matches its prediction to 
those measured in experimental studies. For this purpose, 

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1 1.2

G
/G

m
ax

(M
ea

su
re

d)

G/Gmax (Predicted)

Testing set
R2 = 0.980
MAE = 0.028
RMSE = 0.039

ideal fit

Fig. 3   Predicted versus measured values of G/Gmax for testing data 
set
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Fig. 5   Predicted versus measured values of G/Gmax for centrifuge 
validation set

Table 4   Statistical parameters for evaluation of ANN model perfor-
mance

Group Performance

R2 MAE RMSE

All element tests 0.983 0.026 0.036
Training 0.984 0.026 0.034
Testing 0.980 0.028 0.039
Validation (centrifuge) 0.941 0.040 0.054
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changes of each input parameters on the amounts of G/Gmax 
were investigated while the other parameters were kept fix 
at their mean values in data set (Table 2).

Figure 6 shows variation of shear stiffness ratio, G/Gmax, 
versus confining pressure, σ′0, at different levels of shear 
strain, γ. G/Gmax increases with increase and decrease of 
σ′0 and γ, respectively. This trend of variations is similar to 
the results of laboratory cyclic triaxial experiments carried 
out by Kokusho (1980) on Toyoura sand with mean grain 
size of 0.19 mm (Fig.  7). The tendency of G/Gmax versus 
effective confining pressure, σ′0, at different levels of shear 
strain amplitude, is in qualitatively well agreement with 
the experimental results of Kokusho (1980). Comparison 
between Figs. 6 and 7 confirms the results of the sensitivity 

analysis for σ′0 and γ, and reasonable performance of the 
ANN-based model.

Variation of shear stiffness ratio, G/Gmax, versus mean 
grain size, D50, at different relative densities are depicted 
in Fig.  8. G/Gmax increases with increase of Dr (decrease 
of void ratio, e), and decreases with increase of D50. In the 
range of G/Gmax data proposed by Seed and Idriss (1970) 
for sands and Seed et  al. (1986) for gravels (Fig.  9) the 
main value of curve defining G/Gmax versus γ for gravels 
is typically 10–30% less than those for sands. Of course, 
there is a slight overlapping in the range for sand and grav-
els. However, variation trend of G/Gmax with respect to D50 
is consistent with their results.
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The results of sensitivity analysis show that Dr and D50 
have a less important effect on shear stiffness ratio than 
σ′0 and γ. However, the results show good performance of 
ANN model.

Besides, difference between the measured G/Gmax to the 
amounts predicted by the ANN-based model as relative 

error, with respect to the shear strain amplitude, γ, for all 
element tests data is illustrated in Fig. 10. In this figure, as 
the scattering increases, the precision of the model conse-
quently decreases. It is observed that the developed ANN 
model can predict the G/Gmax of cohesionless soils with 
satisfactory accuracy because the relative error is reason-
ably distributed between two lines illustrating ±10% rela-
tive error.

Comparison with the previous studies

For comparison purposes, predictions of some previously 
published relationships which are only in terms of γ (Roll-
ins et al. 1998), or γ and σ′0 (Ishibashi and Zhang 1993) are 
also presented in the Fig. 11. Ishibashi and Zhang (1993) 
collected an experimental database on dynamic shear stiff-
ness of soils. Their study is one of the most comprehensive 
studies on the dynamic properties of soils. They presented 
a unified formula for shear stiffness ratio of cohesionless 
soils in terms of cyclic shear strain amplitude and effec-
tive confining pressure (Ishibashi and Zhang 1993) as 
Eq. (6–8):

In order to define the shear stiffness ratio (G/Gmax) 
against shear strain amplitude (γ) Rollins et  al. (1998) 
employed a hyperbolic model for cohesionless soils based 
on a large database (Eq. 9).

The comparison (Fig.  11) shows that the values pre-
dicted by ANN model can reasonably predict the G/Gmax, 
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Table 5   Comparison between 
statistical index for ANN model 
and the previous studies

Model Performance

R2 MAE RMSE

Rollins et al. (1998), Eq. (9) 0.750 0.121 0.136
Ishibashi and Zhang (1993), Eqs. (6–8) 0.882 0.071 0.095
ANN-based model (present study) all element tests data 0.983 0.026 0.036
ANN-based model (present study) centrifuge data 0.941 0.040 0.054
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while the available relationships generally under-predicted 
or over-predicted the measured these amounts.

The values of R2, RMSE, and MAE for the proposed 
ANN model and the values of G/Gmax estimated by Ishiba-
shi and Zhang (1993), and Rollins et al. (1998)’s equations 
for cohesionless soils are presented in Table 5. The statis-
tical results presented in Table 5 confirm higher accuracy 
of the proposed ANN model in comparison to the other 
researcher’s relationships.

In order to conduct the seismic site response analysis, 
the dynamic curves must be predicted. The ranges of shear 
stiffness reduction for cohesionless and cohesive soils are 
quite wide. Overall, selections of dynamic curves have 
an important effect on the dynamic analysis such as site-
response analysis. However, the range of variation in the 
select of curves shows the uncertainties associated with the 
dynamic, nonlinear behavior of soils. Therefore, in these 
analysis uncertainties must be reduced by more detailed 
shear stiffness ratio curve. These curves must be calculated 
based on accurate computational method such as ANN.

Summary and conclusions

The accurate prediction of shear stiffness ratio parameter is 
a significant issue in earthquake and geotechnical engineer-
ing. In the present research, relatively large experimental 
database consisting laboratory cyclic experiments include 
cyclic torsional shear, resonant column, and cyclic triaxial 
tests on cohesionless soils were utilized. Artificial neural 
network (as a powerful intelligent tool) was used to develop 
a shear stiffness ratio model. On the basis of the observa-
tions in the previous experimental studies on cyclic and 
dynamic behavior of cohesionless soils, four parameters; 
effective confining pressure, shear strain amplitude, mean 
grain size, and relative density were employed as input 
parameters to develop the ANN-based model. Moreover, 
results of several centrifuge modeling tests results, which 
were not employed during model development, were uti-
lized for further examination of the G/Gmax model as vali-
dation set. The proposed model demonstrated a good per-
formance for all tests data (R2 = 0.983) and centrifuge data 
set (R2 = 0.941).

A sensitivity analysis was conducted to check the behav-
ior of the ANN-based model under various conditions and 
to verify model behavior with those recorded in experimen-
tal studies. The results demonstrate that G/Gmax increases 
with increasing σ′0 and Dr, while other influential factors 
were kept constant. Also, G/Gmax decreases due to increas-
ing γ and D50. Based on sensitivity analysis results, Dr and 
D50 have a less important effect on shear stiffness ratio than 
γ and σ′0. These variation trends in sensitivity analysis of 

the developed G/Gmax model are in good agreement with 
the previous experimental results.

Finally, the performance of the developed G/Gmax model 
has been compared with some of the previously empirical 
relationships. It is clearly shown that the ANN-based model 
have a much good performance than the previous famous 
relationships. Target statistical criteria such as R2, RMSE, 
and MAE for the proposed ANN model and previous stud-
ies presented in Table 5. The results illustrated in this Table 
confirm higher accuracy of the proposed G/Gmax model.
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